

webinos project deliverable

Phase II architecture and components

September 2012

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This report is a public deliverable of the webinos project. The project members will review any feedback received; updates will
be incorporated as applicable. The webinos project reserves the right to disregard your feedback without explanation. Later in
the year, update to the report may be published on www.webinos.org as well as being made available as a live and community
maintainable wiki.

If you want to comment or contribute on the content of the webinos project and its deliverables you shall agree to make
available any Essential Claims related to the work of webinos under the conditions of section 5 of the W3C Patent Policy; the
exact Royalty Free Terms can be found at: http://www.w3.org/Consortium/Patent-Policy-20040205/.

This report is for personal use only. Other individuals who are interested to receive a copy, need to register to
http://webinos.org/downloads. For feedback or further questions, contact: editors@webinos.org

DISCLAIMER: webinos believes the statements contained in this publication to be based upon information that we consider reliable, but we do
not represent that it is accurate or complete and it should not be relied upon as such. Opinions expressed are current opinions as of the date
appearing on this publication only and the information, including the opinions contained herein, are subject to change without notice. Use of
this publication by any third party for whatever purpose should not and does not, absolve such third party from using due diligence in verifying
the publication's contents. webinos disclaims all implied warranties, including, with limitation, warranties of merchantability or fitness for a
particular purpose. webinos, its partners, affiliates, and representatives, shall have no liability for any direct, incidental, special, or
consequential damages or lost profits, if any, suffered by any third party as a result of decisions made, or not made, or actions taken, or not
taken, based on this publication.

Copyright webinos project © 2012 webinos.org

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://webinos.org/downloads
mailto:editors@webinos.org

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 2 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Abstract

This deliverable describes in detail the system architecture of the Phase II webinos platform.

The primary areas covered in this deliverable are the detailed technical specifications for all of the

major components of a webinos system; including the Personal Zone Proxy (PZP), Personal Zone Hub

(PZH), common components of both PZPs and PZHs, and also the application interface. We also

include an informative specification section detailing how some of the components work together

and can be deployed.

This deliverable does not include specification of the webinos API's, neither does it address the

security and privacy issues which motivate much of the architecture. Those aspects of the webinos

platform are covered in the phase II API specifications and security framework deliverables

respectively.

This deliverable consists of six separate sub-sections and a Glossary document

HLS -High Level Specification

PZP - Personal Zone Proxy Specification

PZH - Personal Zone Hub Specification

CORE - Common/Core Components Specification

APPS - Applications Specification

INF - Informative Specification

GLOS - Glossary

Keyword list

webinos, Personal Zone, PZH, PZP, specification, architecture, foundations, authentication, discovery,

messaging, context, security, metrics, network overlay, high level architecture, key architectural components,

session creation

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 3 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Contents

1. INTRODUCTION ... 9

 Intended audience ... 9 1.1

 What is webinos? ... 9 1.2

 Document structure .. 10 1.3

2. HLS -HIGH LEVEL SPECIFICA TION ... 11

 Architecture Overview ... 11 2.1

2.1.1 webinos Personal Zones .. 12

2.1.2 webinos on the device ... 18

2.1.3 webinos services and applications .. 19

 Entities.. 21 2.2

2.2.1 Introduction ... 21

2.2.2 Entity Definitions .. 21

2.2.3 Relationships between entities .. 28

3. PZP - PERSONAL ZONE PROXY SPECIFICATION .. 30

 PZP Introduction .. 30 3.1

3.1.1 PZP TLS Client and Server Connection ... 30

3.1.2 PZP Identity .. 31

3.1.3 PZP Modes - Connection States.. 32

 RPC .. 39 3.2

3.2.1 Introduction ... 39

3.2.2 RPC protocol definition .. 39

3.2.3 Mapping JavaScript APIs to RPC messages ... 44

3.2.4 List of additions to general mappings ... 47

 PZP Discovery ... 65 3.3

3.3.1 Introduction ... 65

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 4 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

3.3.2 Technical Formal Specification .. 66

 Device UI Adaptation and Awareness ... 78 3.4

3.4.1 Introduction ... 78

3.4.2 State of the Art .. 78

3.4.3 Technical specification ... 90

3.4.4 Sequence diagrams .. 91

3.4.5 Data & Communication .. 92

3.4.6 Platform specified ... 96

3.4.7 UI-Widget: Navigation Bar ... 97

3.4.8 UI-Widget: Split View .. 102

3.4.9 Font-size increase on the TV/Vehicle ... 103

 Remote UI Usage ... 105 3.5

3.5.1 Specification.. 105

4. PZH - PERSONAL ZONE HUB SPECIFICATION ... 108

 PZH Introduction .. 108 4.1

4.1.1 Pre-configuration .. 108

4.1.2 PZH configuration... 109

 Authentication ... 116 4.2

4.2.1 User authentication ... 116

4.2.2 Device authentication .. 117

4.2.3 Authentication state machine .. 120

4.2.4 Actions requiring authentication ... 121

4.2.5 Initiating OpenID authentication from the PZP .. 122

4.2.6 Entity authentication tables ... 125

 Personal Zone Hub Administration .. 130 4.3

4.3.1 Device Enrolment ... 130

4.3.2 PZP Revocation... 137

4.3.3 PZH Export and Import... 139

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 5 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4.3.4 User preferences option .. 141

5. CORE - COMMON/CORE COMPONEN TS SPECIFICATION 142

 Synchronisation ... 142 5.1

5.1.1 Introduction ... 142

5.1.2 Working .. 142

5.1.3 Items synchronised .. 146

5.1.4 One Way synchronisation ... 146

5.1.5 Connectivity and triggering .. 149

5.1.6 Configuration .. 150

 Personal Zone Key Infrastructure ... 151 5.2

5.2.1 Introduction ... 151

5.2.2 Certificate hierarchy overview .. 151

5.2.3 Key specifications ... 155

5.2.4 Certificate exchange .. 157

5.2.5 Key Storage Interface .. 162

5.2.6 Key backup and recovery .. 162

 Policy .. 163 5.3

5.3.1 Conceptual architecture ... 163

5.3.2 Access Control Policies .. 166

5.3.3 Privacy and data handling policies .. 187

5.3.4 Default policy .. 201

 Service Discovery .. 207 5.4

5.4.1 Introduction ... 207

5.4.2 Discovery mechanism description .. 207

5.4.3 Intra-Zone service discovery ... 207

5.4.4 Session layer message format ... 211

5.4.5 JavaScript API... 213

 Messaging and routing.. 214 5.5

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 6 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

5.5.1 Introduction ... 214

5.5.2 Technical Formal Specification .. 214

5.5.3 JavaScript APIs ... 225

5.5.4 Dependencies on other components .. 225

 Context Manager... 226 5.6

5.6.1 Introduction ... 226

5.6.2 Context Functionality .. 227

5.6.3 Context Manager Data Flow Overview .. 229

5.6.4 Context Vocabulary .. 230

5.6.5 Deployment Diagram .. 232

5.6.6 Message Interception and storage ... 234

5.6.7 Context Querying .. 234

5.6.8 Context Rules .. 235

5.6.9 Scheduled API Calls ... 236

6. APPS - APPLICATIONS SPECIFI CATION ... 237

 Application Security Controls.. 237 6.1

6.1.1 Types of application .. 237

6.1.2 Application (widget and browser) installation .. 237

6.1.3 Update of applications and application signatures .. 240

6.1.4 Revocation and management of application signatures 240

6.1.5 Application communication with the PZP .. 240

6.1.6 Application communication with external services .. 241

 webinos Applications and Widget Runtime specification 243 6.2

6.2.1 Formal Specification of webinos Application .. 243

6.2.2 Formal Specification webinos Web Runtime Environment 253

 Application life cycle ... 256 6.3

6.3.1 Notify web browsers of available widgets .. 256

6.3.2 Life cycle API ... 257

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 7 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

6.3.3 Automatic execution of applications... 258

6.3.4 Application installation on multiple devices ... 259

6.3.5 Application update .. 261

6.3.6 Application de-installation .. 261

6.3.7 Exposing application functionalities as service to other applications 262

6.3.8 Background applications ... 266

 Application Runtime State Synchronisation .. 267 6.4

6.4.1 Requirements .. 267

6.4.2 Operational modes for shared objects ... 268

6.4.3 Object synchronisation protocol ... 268

6.4.4 Architectural embedding ... 277

6.4.5 Interface for usage of shared objects in Web runtime environments 278

6.4.6 Code table ... 278

7. INF - INFORMATIVE SPECIFIC ATION ... 280

 PZH Deployment ... 280 7.1

7.1.1 Deployment Options ... 280

7.1.2 Current Implementation of PZH ... 281

7.1.3 Deployment Diagram .. 287

7.1.4 Various component interaction in PZH .. 288

 PZP Components & Deployment... 292 7.2

7.2.1 webinos PZP Components .. 292

7.2.2 Platform specific implementation details .. 295

7.2.3 Service discovery with Web Intents .. 302

 Media and Event Real Time Synchronisation .. 304 7.3

7.3.1 Cross device real time event synchronisation ... 304

7.3.2 Media run time synchronisation .. 304

 OAuth service .. 305 7.4

7.4.1 Sequence diagram ... 306

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 8 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

7.4.2 Component and connections diagram ... 307

7.4.3 Methods definition .. 308

7.4.4 Overview ... 308

7.4.5 Exposed interfaces .. 308

 OpenID Attribute Exchange .. 312 7.5

8. ACKNOWLEDGEMENTS .. 313

9. GLOS - GLOSSARY ... 314

 Definitions of Stakeholders .. 314 9.1

 General Definitions ... 316 9.2

 Acronyms ... 339 9.3

10. REFERENCES .. 342

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 9 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

1. Introduction

This document provides the detailed technical specifications for the webinos platform. It succeeds the

webinos scenario, use cases and requirements specifications [WOS21, WOS22, WOS24, WOS25]. This

specification also forms the webinos project Phase II specifications that supersede the project Phase I

architecture deliverable. Users and developers should refer to these documents instead of the earlier

version.

 Intended audience 1.1

The primary intended audience of this specification is developers of the webinos platform and

developers of webinos applications, as defined in [WOS25, p17, p18]. Other users who may find these

documents useful include, but are not limited to, webinos enabled device manufacturers, webinos

application service providers and network providers [WOS25, p17, p18]. For webinos platform

developers these documents are the complete implementation guide and the requirements for a

conformable webinos platform implementation. The developers should refer to these documents during

the development process and any maintenance of and future extensions to the platform. For developers

of webinos applications this document provides an insight into how the platform works and will help the

developers make the best use of webinos features to enrich their applications in development.

 What is webinos? 1.2

Increasingly, users are owning more connected devices and expecting applications to keep preferences

and status information synchronised across devices in different domains. The purpose of the webinos

project is to define and deliver an open source platform, which will enable web applications and services

to be used and shared consistently and securely over a broad spectrum of connected devices. To

achieve this, it defines and provides an architecture and infrastructure to allow applications to run not

only on a single device, but also across devices and domains. This applies to device features as well. New

APIs are also provided to allow access to local and remote device resources and network resources in

the Cloud.

webinos, as defined in [WOS21, p14] and [WOS22, p6], is a cross-domain platform for secure web

application delivery. These domains include mobile, PCs, home media (TVs), and in-car devices. It is

specified as middleware installed on a selection of operating systems (OSs) on current devices to enable

the consistent and secure web application user experience. At the time of writing the supported OSs

and device platforms include:

¶ Android 2.3.x
tested with devices: Nexus S, Asus Transformer Prime, Samsung Galaxy S2, Sonyericsson Xperia
Arc, Galaxy Note

¶ Microsoft Windows 7 SP, Windows 7, Windows XP
tested with laptops: Vaio z11, Dell, Asus EeePC (1215N)

¶ Linux: Ubuntu 10.04 LTS, Slackware 13.1, 13.37, Mint, Fedora
tested with devices: VMWare Player, Samsung, Asus EeePC (1215N)
TV variants of Cocom Churchill 177, Acer Revo etc.
vehicle variant of Pandaboard Rev. A3 with Ubuntu 11.10

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 10 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

¶ Mac OS X

The webinos platform includes not only a set of newly defined APIs to enhance current web application

runtime environments, but also an overlay network architecture to enable the webinos specific features.

 Document structure 1.3

This document, covers the architecture and required infrastructure and service components. The

specification consists of 6 sections; each of which can be treated as a separate entity.

The sections themselves are:

¶ HLS - High level specification
¶ PZP - Personal Zone Proxy specification
¶ PZH - Personal Zone Hub specification
¶ CORE - Common and core specification
¶ APPS - Applications specification
¶ INF - Informative specification

webinos APIs and security are only mentioned briefly where appropriate in these documents to assist

specifying the system architecture and components. They are specified in [WOS34] and [WOS36] in

detail respectively.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 11 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2. HLS -High Level Specification

 Architecture Overview 2.1

This chapter describes the webinos architecture, which is centred around the concept of a Personal

Zone as a means to organise personal devices and services. Each device, whether it be a mobile, tablet,

desktop, smart TV or in-car unit device, is extended to enable the device to be a part of the Personal

Zone. Services are the webinos way of exposing APIs. The webinos architecture seeks to make it easier

for web application developers to create applications that span devices of different hardware platform

and operating systems. This is achieved through:

¶ Logical communication paths based on mutual authentication, and decoupled from underlying
interconnect technologies

¶ Simple discovery of devices/services
¶ Simple access to local and remote services
¶ Adaptation based on the context of user, device and environment, e.g. day/night, quiet/noisy

and locations

Practically, webinos provides web application developers with a collection of APIs. The APIs are specified

in the webinos project deliverable D 3.4. Not only exposed with a set of webinos services implemented

by webinos itself, these APIs also can be realised through 3rd party components. We believe this will

lead to a market for such components as the demand is stimulated by the continuing evolution of

devices and interconnected technologies. This will, in turn, feed the market for services provided by web

developers.

webinos builds upon the state of the art for web applications. Taking HTML5 and W3C Device APIs

Working Group (DAP) technologies as a foundation, it extends these concepts to allow for the following:

¶ applications which make effective use of the resources on the devices of TV, automotive, tablet,
PC and mobile domains;

¶ applications which interoperate over a range of diverse device types;
¶ applications which can make use of services on other devices owned by the same person and

other people;
¶ discovery of services, devices and people, on multiple interconnect technologies - even when

they are not connected to the Internet;
¶ efficient communication that can pass messages over different physical bearers and can make

sensible use of scarce network resources;
¶ ensured security with mutual authentication and privacy protection - webinos features strong

authentication of all devices within a Personal Zone and between Personal Zones - tackling the
spoofing and phishing weaknesses of the Web head on;

¶ and finally, distributed user preferences and user centric policies in XACML (eXtensible Access
Control Markup Language):

o allowing the user to define what applications work on which devices,
o defining privacy preserving policies, defining what information is exposed to other

services, and
o ensuring that these capabilities are interoperable and transferable - ensuring a user

stays in control of his or her devices and applications.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 12 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.1.1 webinos Personal Zones

webinos introduces the concept of Personal Zone as an overlay network. It provides a basis for

managing the user's devices, together with the services running on them. This also includes personal

services the user uses in the Cloud. The Personal Zone supports:

¶ Single sign-on, where the user is authenticated to a device and applications, and the device is
authenticated to the Personal Zone. This avoids the need for establishing direct peering
relationships between each pair of devices. It also allows for stronger authentication with the
services the user uses. The architecture also allows for situations where the user is offline, e.g.
when the user is away from home and currently unable to access the Internet.

¶ Shared model of the context. This covers users, device capabilities and properties, and the
environment. It enables applications to dynamically adapt to changes, and to increase usability
by exploiting the context.

¶ Synchronisation across the devices in the zone. This includes support for distributed
authentication, as well as personal preferences, and replication of service-specific data, e.g.
social contacts, and appointments. Synchronisation is essential for supporting offline usage.

¶ Discovery and access to services. This includes local discovery, e.g. of services exposed by the
user's devices, whether connected through Wi-Fi, Bluetooth, or USB, as well as remote
discovery for services exposed in the Cloud. The high level discovery API allows Web developers
to search for all local services, or to filter by service type and context, or even to locate a named
service instance. Remote discovery is based upon existing user names and Email addresses,
resolving to a URI for a Personal Zone.

The Personal Zone is implemented on a distributed basis, consisting of a single Personal Zone Hub (PZH)

and multiple Personal Zone Proxies (PZPs). Figure 1, as a specification level deployment diagram, depicts

the concept of Personal Zone. Inside the Personal Zone each device installed with a PZP is connected to

the PZH. The PZH is identified by a URL, supporting RESTful APIs through JSON-RPC [JRPC]. The basic

webinos functionalities, service discovery, authentication, and synchronisation, can be carried out on a

intra and inter Personal Zone base. Session-wise communication between devices may take place

directly independent of bearer technologies. PZH and PZP are described in following sub-sections 2.1.1.1

and 2.1.1.2 respectively.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 13 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Figure 1 : Personal Zones

The webinos overlay network is shown in Figure 2. The webinos network including its entities is overlaid

upon current Web technologies. Normally the PZH is hosted by a PZH provider, which provides Cloud

services. The PZP entity resides with a user's device. A TLS session is set up between PZH and PZP,

controlled by security policies.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 14 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Figure 2 : webinos overlay network

2.1.1.1 Personal Zone Hubs (PZHs)

To enable external access to a Personal Zone, webinos defines a Personal Zone Hub (PZH) as a service

that is accessible via the Internet, which is available (nominally) 24x7, unlike personal devices that may

be powered down or out of communications range. There is a one-to-one correspondence between

Personal Zones and PZHs. Each PZH belongs to only one user. This could for instance, be provided as a

value-added service to users by ISPs (Internet Service Providers) or it could be integrated in the DSL

router at home. The PZH is identified by a URL. It is part of the Personal Zone and supports access by the

Personal Zone owner from other devices. E.g., when the owner is using a public computer in an Internet

Cafe, the PZH enables him or her to access his or her Personal Zone's devices and services for the

duration of a browsing session. It also enables access by others, subject to the policies that the owner

has defined.

The PZH further provides support for discovering other PZHs based upon someone's full name,

pseudonym, or Email address. Note that users may choose to limit discovery, e.g. to people within a

given group, or to prevent discovery altogether, in which case it is up to the user to communicate the

URL for their PZH to others as needed.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 15 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The followings are the critical functions that a PZH provides:

¶ A fixed entity to which all messages can be sent to and routed to a personal postbox as it were
¶ An authoritative master copy of a number or critical data elements that are to be synchronised

between PZPs and the PZH, specifically
o certificates to authenticate PZPs/PZHs of trusted people against each other
o application identifiers (and/or certificates) of applications granted access into the Zone
o service identifiers (and/or certificates) for trusted services to which the Personal Zone

may attach
o device identifiers, to assist with platform integrity tests
o credentials for "non webinos" services to give a pseudo single sign-on experience
o all policy rules, for distributed policy enforcement
o all relevant context data

¶ and the security functions of
o user authentication
o PZP secure session creation for transport of messages and synchronisation
o service session creation for secure transport of messages between applications and

services
o secure social networking: using the exchanged certificates between trusted people
o potentially, single sign-on service to other web services, using the PZH as a secure proxy

¶ Context synchronisation: the PZH should act as the master repository for all context data

2.1.1.2 Personal Zone Proxies (PZPs)

The webinos Personal Zone Proxy runs locally on personal device. As a satellite proxy it acts like both a

server (when talking to the end user on behalf the PZH) and a client (when talking to the PZH on behalf

of the user and local services and applications). The PZP hosts webinos services and applications, which

makes it a server. The PZP acts in place of the PZH, when there is no Internet access to the central PZH

server. In order to act in its place, information, as already listed above, needs to be synchronised

between the PZPs and the PZH. The PZP fulfills most, if not all, of the functions of a PZH, when there is

not PZH access. It sits between the webinos runtime environment and the PZH and receives user

requests and gives responses locally to the user, if it can. In addition to the PZH proxy function, the PZP

is responsible for all discovery using local hardware based bearers like Bluetooth, ZigBee, NFC (Near

Field Communication), etc. Unlike the PZH, the PZP does not issue certificates and identities. For

optimisation reasons PZPs are capable of talking directly to each other, without routing messages

through the PZH. While a PZH can only reside in the Cloud or physically inside a single point in the user's

home network, every webinos enabled device has a PZP running on it. A PZP can also reside in the

Cloud. This is a special case called a "virtual PZP" providing cloud services such as an online contact list,

calendar and so forth.

Figure 3 depicts the architectures for PZH and PZP. The PZH and PZP talk with each other with JSON-RPC,

which is set up over TLS sessions. As with the PZH, the PZP stores authentication certificates, maintains

context data, manages policies, and keeps a known user list. Both the PZH and PZP have functions of

messaging and routing, service discovery and synchronisation. The PZP also has the function of peer PZP

discovery.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 16 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Figure 3 : PZH and PZP

2.1.1.3 Local connections

One of the features provided by webinos is a unified local connection service based on physical

proximity, that is done by making the different interconnect technologies transparent. A webinos

enabled device is able to find any supported interconnected other devices around it. This overlay

network allows different applications and services to talk to each other over these different

interconnect technologies, this insulates application code from the underlying network details. The PZP

therefore enables applications to access services on other webinos devices in the same Personal Zone.

Figure 4 : Local devices connected to a webinos enabled device

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 17 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Figure 4 depicts the local connections around a webinos enabled device. Devices in an NFC area, a

personal area network (PAN) or a local area network (LAN) are regarded local, no matter what kind of

bearers they are using. Usually LAN devices have a full IP protocol stack and are running PZPs Examples

are PCs, Wi-Fi laptops, smart TVs and in-car units. NFC and PAN devices often are not equipped with a

full IP protocol stack and thus have no direct Internet access. There is no PZP running on those devices

and they are regarded as non-webinos devices. More often, they are deemed as peripherals or peer

devices providing some sort of point-to-point single hop networked services. Examples are USB

keyboards, RFID tags, and smart phones connected via Bluetooth. They expose their services to the

Personal Zone which can be used by the connected webinos enabled device.

Devices physically located in the same area may belong to different users and therefore logically could

be in different Personal Zones. That means a local connection may be established across different

Personal Zones and users can share services with each other locally.

2.1.1.4 Synchronisation

webinos provides synchronisation function based on rsync [RSNC]. It involves detecting and merging

differences, and asking the user to resolve conflicts, taking into account periods of offline usage. The

process involves a comparison of clocks as a basis for correcting for skews prior to comparing the time

of each change. The approach is inspired by work on distributed revision control and 3 way merge

algorithms for tree structured data. Synchronisation takes place when a device is enrolled into the

Personal Zone or when changes occur. This is also coupled with local discovery, to enable a shared

model of the context. For IP based networks, multicast announcements and query responses can be

observed to update a local cache. Synchronisation and secure access to the context form a crucial part

of the webinos platform. Browsers already support mechanisms for recording preferences and

application specific local storage. webinos can build upon this with additional database files held as part

of the browser profile, and accessible from trusted code in browser extensions. webinos may use JSON

files to exchange synchronisation messages.

Synchronisation needs to function even when the device is operating with a subset of a Personal Zone,

in absence of access to the Internet. This relies on being able to synchronise the devices in a peer to

peer model. Synchronisation depends on being able to merge changes and to detect and resolve

conflicting changes. If the context data model is independent, then one approach is to simply take the

latest change to a particular part of the context. If the context data model has inter-dependencies, the

updated model needs to satisfy the integrity constraints.

2.1.1.5 Policies

In webinos policies are written in an XML file. In this file it's possible to specify multiple sets of policies:

every set has a "combine" rule that is used to determine which policy shall be applied, e.g. with the

"first-matching-target" combine rule, every request shall be matched against the first policy which

matches the request's target. The target of a policy could be users, applications, devices or

combinations of them. Policies are expressed in the simplified XACML format defined in [BDAS]

following the grammar provided by WAC. This format has been used as a basis in different specifications

as from W3C DAP and WAC [WCDS].

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 18 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Policy management is a service implemented within the PZP. The policy management service enforces

privacy and access control requests and to manage the disclosure of user's personal data and to control

the access to the local device capabilities and features. This is done by matching the requests against

written policies in order to determine whether to allow or to deny the access to the requested

resources.

2.1.2 webinos on the device

A webinos enabled device, or webinos device in short, is a device with a PZP running on it, and usually a

webinos Widget Runtime (WRT) environment for running webinos applications. The architecture of a

webinos device is shown in Figure 5. In this figure, the webinos entities are installed as middleware on

the device. webinos applications run in the web browser or as a widget rendered on the native device

OS.

Figure 5 : webinos device

A webinos WRT is a special type of browser. It should be capable of rendering the latest JavaScript,

HTML and CSS specifications. It is responsible for rendering the UI elements of the webinos application.

As part of the WRT, a webinos root object is exposed as part of the global namespace for web page

scripts, and provides the core set of webinos APIs as methods and properties to make use of the specific

device capabilities, thus making the webinos application run across different device platforms. Via this

root object, third party developers will be able to access the webinos functionality. The webinos WRT

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 19 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

differs from a normal browser or web runtime in that all extended JavaScript functions, as well as some

normal browser behaviour (such as XHR) must be mediated by the webinos policy enforcement layer. A

webinos WRT will present environmental properties and critical events to the PZP so that it may process

the security policy and contextual events correctly.

2.1.3 webinos services and applications

2.1.3.1 webinos services

For applications using it, a webinos service is a special webinos API. It provides a collection of functions

and events that are accessible by webinos applications. These functions and events are always

presented to the application developer as a set of JavaScript functions, no matter where the

implementation resides. There exist the following types of webinos services:

¶ PZP hosted webinos APIs: APIs that can be accessed remotely by using JSON-RPC. The webinos
API is hosted by a PZP and again access is mediated by a policy manager on the PZPs of both the
caller and the provider.

¶ webinos applications providing APIs: an application is a webinos service if it presents external
services as JavaScript APIs. The application is hosted by the PZP and other applications can make
use of it.

2.1.3.2 Binding, privacy and security

The webinos platform provides each device with a set of APIs for accessing services exposed directly by

the Personal Zone. An example is the method used to discover services matching the given service type

and context constraints. The method is asynchronous, and results in callbacks as service instances are

discovered. Application developers can then provide a user interface (UI) for selecting between

alternatives, where the list is dynamically updated as services become available or cease to be available.

The approach allows application developers to offer users the means to obtain further information

about each of the choices, as well as to record preferences for use in future situations.

The process of binding to a service (having first discovered it) involves:

¶ mutual authentication, where the Zone authenticates the service, and the service authenticates
the Zone;

¶ secure communication through the use of cryptographic protocols, protecting against
eavesdropping and man-in-the-middle attacks, spoofed IP addresses and spoofed DNS records;

¶ reviewing and granting the request by the service for elevated privileges.

Applications (or embedded services) can request elevated privileges. This is typically handled when the

application first runs and the user's decision recorded for subsequent uses. Thus the applications are

deemed as services and policies apply. The underlying model is that of notice and consent. The

associated UI is provided by the webinos platform, and not by the applications. A further UI is provided

to enable users to review and revoke decisions. The device itself may impose security policies, e.g. white

listing which services may have particular privileges.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 20 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.1.3.3 Extensibility

The webinos APIs are designed for extensibility. It is common to pass an object as an argument to a

method where the object supports one or more interfaces. These interfaces are interpreted by third

party components, and such third parties are also responsible for documenting the extensions. Web

developers can call a standard QueryInterface method to cast an object to a named interface, when

necessary to avoid name clashes.

Having been discovered and bound, a service is exposed as an object in the web page's script execution

environment. This object acts as local proxy for the service, which may be provided by a remote device.

webinos allows application developers to register a simple callback function, or to pass an object

supporting a given interface, i.e. with a named method that is used as a callback.

2.1.3.4 webinos applications

A webinos application is hosted by a PZP and runs "on device", where the device could also be Internet

addressable, i.e. a server. A webinos application is packaged, as per packaging specifications, and

executed within the WRT. A webinos application has access to security sensitive capabilities, mediated

by the XACML file specific to the device's policy manager component. A webinos application may also

expose some or all of its capability as a webinos service. An application developer is granted access to

webinos capabilities via the webinos root JavaScript object.

webinos applications may be downloaded and installed on devices, or they may be hosted by servers,

with components that are dynamically downloaded when needed. Applications can make use of

services, and in turn can provide services. Services may include a UI exposed as part of an application,

e.g. within an HTML iframe element. The ability to combine and tailor services is used to support

"mashups". Applications are essentially services that can be installed or bookmarked.

webinos enables the local, client-side adaptation of the UI of an application based on the device

characteristics. The adaptation process takes several of these characteristics into consideration, the

most notable being screen size and resolution, device type and input modalities. To make this possible,

applications will be created with a declarative UI description that is device-independent. This description

will stay as close to the basic web technologies as possible. At runtime, this description is transformed

into a HTML/CSS/JS layout suited for a web runtime.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 21 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 Entities 2.2

2.2.1 Introduction

This section defines the entities within webinos and explains how they are named, identified, and

authenticated. In addition, their relationships are outlined.

For definitions of terms other than entities -- such as synchronisation, discovery, and routing -- please

see the Glossary (section 9).

2.2.1.1 Names and Addresses

This section is non-normative.

In general, within the realm of computing, names are used by humans and addresses by computers. For

example, a website would be referred to as www.ietf.org by a person, but the network would only

know what to do after it is instructed to send requests for web pages to 64.170.98.30. The process of

converting the identifier of an entity to a computer-usable address is called resolving.

2.2.1.2 Issues with online identities

This section is non-normative.

webinos is about securely sharing with others. These others must be known, looked up and addressed.

For one thing, this means that identities play a major role. Nowadays, many users use their GMail or

Facebook accounts as online identities. This complicates matters as this breaks the usual internet service

interaction, where the server that delivers a service (email, web, chat, ...) is part of the domain. With

webinos, it is not forseen that Facebook, Apple and others will be running Personal Zones for users any

time soon. Hence, this specification contains a mechanism to translate domains used for user identity to

domains used for running the webinos service.

2.2.2 Entity Definitions

2.2.2.1 User

Throughout this document, the term user refers to a person that has a webinos Personal Zone. This

requires at least a live Personal Zone Hub, run by some Personal Zone Hub provider.

Users have names and identities. The current situation with online identities is somewhat confusing, but

here it is assumed that webinos users have one identity which takes the form of an OpenID.

Users SHALL be identified by their OpenID identity, being either an email address or an URI. The

corresponding name SHOULD be stored so the user can be addressed (by webinos and webinos

applications and widgets) in a nicer manner.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 22 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.2.2.2 webinos-enabled devices

These are the physical cars, TVs, phones and PCs installed with webinos. webinos-enabled devices are

normal devices with a PZP running on it, and provide a widget renderer if a webinos application runs on

it. We assume a 1-to-1 mapping between device and PZP. There is only one PZP on a webinos enabled

device. Nevertheless, the PZP can be re-configured if the device is shared between different persons.

Within the specification the term device is not used.

2.2.2.3 Personal Zone (PZ)

The Personal Zone is the webinos equivalent of a user plus all his webinos-enabled devices, or PZPs and

one PZH. Each user has exactly one PZ, containing one PZH and zero or more PZPs. Throughout the

webinos specification, the term Personal Zone or PZ is only used in a non-technical sense.

2.2.2.4 Personal Zone Hub (PZH)

The Personal Zone Hub is the main entry point to the Personal Zone. It is expected to be commonly

implemented as a server on the internet that provides an entry point to a user's PZ. As such, it is

nominally considered to be always online - even if regular devices may not always be able to reach it -

and it enforces security. It is identified by that user's identity. Being defined as a web server it has an

address in the form of a URI.

In addition, it also provides services related to the administration and management of the Personal

Zone. More specifically, the PZH provided services are:

¶ Administration of the PZH, PZPs and devices
¶ authentication of PZHs and PZPs
¶ secure communication with PZPs in the same Personal Zone and with other PZHs in different

Zones
¶ synchronisation with PZPs in the same Personal Zone
¶ webinos service management

We recommend, where possible, that a Personal Zone hub is given a unique sub-domain such that two

hubs do not share the same origin. This is beneficial when hosting PZH administration interfaces as

webpages.

As outlined above, resolving the name of a PZH to an URI has some challenges, mainly because we

expect that the Internet domain of the User Identity will be different from the Internet domain of the

PZH. In short, the following mechanisms are used in the stated order:

1. OpenID attribute exchange

2. DNS NAPTR

3. Webfinger

4. Lookup service at webinos.org

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 23 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

A formal specification of the resolving mechanism can be found in section 5.5

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 24 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Messaging and routing.

2.2.2.5 Personal Zone Hub Provider (PZH Provider)

A PZH provider is a Service Provider that provides all webinos services as an operator. It provides PZH

services to the end users, though the PZH may physically be installed on the user's premise. Also, users

may act as their own provider.

The provider has no formal role in the webinos specification.

2.2.2.6 Personal Zone Proxy (PZP)

The webinos PZP is a software environment residing on a device. Among others, its tasks are:

¶ host applications, both in-browser and as widgets
¶ open up device capabilities as services that implement webinos APIs
¶ manage secure connections to the PZH and to other PZPs (of the same user or other users)

PZPs have a friendly name. The user SHALL have the opportunity to set this name when installing

webinos onto the device. Examples of friendly names are "Peter's phone" and "Georg's PC". The friendly

name MUST be unique within a single PZ.

Upon installation, the PZP SHALL generate a X.509 certificate. This certificate is used as described in

section 5.2 (Personal Zone Key Infrastructure).

PZPs actively connect to their own PZH. This PZH manages the mapping between connections and PZPs.

When communicating from PZP to PZP locally, PZPs identify themselves with a combination of the user

identity and their friendly name. The generated and signed certificates MUST be used to authenticate

this connection.

2.2.2.7 webinos APIs

A webinos API is a collection of methods, events and properties that expose some (combination of)

device capabilities to webinos applications. A webinos API can be mapped to one or more feature URIs

and implemented by webinos services. webinos APIs are defined using Web IDL [WID12] and specified

collectively in [WOS34]. They are identified by their name space.

APIs cannot be invoked directly. Instead, their name space can be fed to the findServices function. As a

result of invoking this function, service objects are returned on which methods can be invoked. The

actual services that implement the webinos APIs are either running on the same PZP as the calling

application or on a remote PZP.

2.2.2.8 webinos application

As defined in [WOS25], webinos application is "an application written using webinos technologies that

will run on a device, across a range of devices reflecting the domains mobile, fix, automotive or home

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 25 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

media and/or server. The application will be able to securely and consistently access device specific

features, communicate over the cloud and adjust to the device and context specific situation." Generally

there are two categories of webinos applications: web browser-based applications and widgets. A

browser-based webinos application is hosted somewhere on a PZP on the Internet and used with a web

browser. A webinos widget is a standalone self-contained web application that is developed dedicated

to a specific OS. Both categories of webinos applications have access to webinos capabilities via the

webinos root JavaScript object. A webinos application also has its access to security sensitive

capabilities, mediated by system policy.

A webinos application can expose some or all of its capabilities as a webinos service. A webinos

application should be packaged as specified in section 6.2 (Widget Runtime and webinos Applications).

In terms of security webinos widgets can be further classified as recognised widgets (W-R) and

unrecognised widgets (W-U). The types of webinos applications are listed in the following table, where a

browser-based application type is an authenticated one (B-A).

Type Runs in
Local /

hosted

Widget

Manifest?

Delivered

over
Installed? Authentication

B-A Browser
Hosted (+

app cache)
Yes HTTPS Yes

TLS certificate, root trusted by

browser

W-R
Widget

renderer
Combination Yes

File +

HTTPS
Yes

Signed widget authenticated by

widget processor. 'Recognised' as

per [WAC]. HTTPS traffic only from

recognised origin.

W-U
Widget

renderer
Combination Yes

File +

HTTPS
Yes

Signed widget, but unrecognised

identity [WAC]. HTTPS traffic only

from recognised origin. HTTPS

traffic authenticated by widget

runtime OR connected to same

entity as the widget signature.

The naming scheme conforms to the W3C widget specification [WGT11] for both web browser-based

applications and widgets. Optionally widgets may have a name and short name. Browser-based

applications may have a name expressed in the title bar.

Applications are identified in conformance with the W3C widget specification [WGT11] for both web

browser-based applications and widgets.

http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_0
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_1
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_2
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_2
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_3
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_3
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_4
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_4
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_5
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_6

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 26 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

However, internally webinos may identify an application through a combination of the application's

name and the author's signature attributes. All applications signed by a different author will have

different identities.

A webinos application is addressed by a URI, which consists of a PZP ID, widget runtime session ID and a

locally unique application ID.

E.g. http://pzh.webinos.com/john.smith%40exampl e.com/pzpSmartTV/63639167/

exampleApplication is a valid webinos application address, whereas

john.smith%40example.com/ pzpSmartTV is a PZP ID, 63639167 is a session ID with a widget

runtime environment, and exampleApplication is the local application ID, plus the PZH provider

prefix, http: //pzh.webinos.com , making it a globally unique application address.

2.2.2.9 webinos services

A webinos service is a software system implementation of the logical interface defined by an API. The

implementation is always presented to the application as client-side proxy objects, which provide a set

of JavaScript functions, no matter where the implementation resides. There exist two categories of

webinos services:

¶ PZP hosted webinos services: they are services that can be accessed remotely by using JSON-
RPC. The webinos service is hosted by a PZP and the access mediated by the PEP on the PZPs of
both the service consumer and the service provider.

¶ webinos applications providing APIs: an application is a webinos service if it presents external
services as JavaScript APIs. The application is hosted by a PZP and other applications can make
use of it.

In terms of implementation a webinos service is packaged like a normal webinos applications, using

W3C widget packaging, but has no user interface. Its entry point is a JavaScript main() function (as

opposed to a start page). A webinos service runs continually in the background. A webinos service can

be optionally be configured to autostart when the host device starts. webinos services only run in the

context of a PZP, never in the context of a PZH.

webinos services are named as their API types. E.g. for the webinos File service, which is a webinos File

API, its name is http: //webinos.org/api/file . Different service implementations may have the

same service name, as long as they implemented the same service, which is a webinos API specification.

webinos services MAY have attributes defining aspects of their implementation, such as who provided

them or where they reside.

A webinos service is identified by a URI, which consists of a PZP ID and a locally unique service ID. E.g.

http: //pzh.webinos.com/john.smith%40example.com/pzpSmartTV/7493754 is a valid

webinos service ID, where john.smith%40example.com/pzpSmartTV is a PZP ID, and 7493754 is

the local service ID, plus the PZH provider prefix, http: //pzh.webinos.com , making it a globally

unique service ID.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 27 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

For applications, a webinos service is not directly addressed. It is communicated through a client-side

proxy object. In the webinos architecture, a webinos service ID is also its address. A service consumer is

able to address the service by its ID. By parsing the ID the consumer gets the PZP address and the local

service ID, and locates the service.

For applications, webinos services are resolved with the webinos Service Discovery API through the

findServices() call, which returns a collection of client-side proxy objects. These are then used to

address the service.

2.2.2.10 webinos widget renderer (Also known as "Widget Runtime" or WRT)

This section is non-normative.

Widget Renderers are the GUI element on each device capable of displaying a widget. A renderer is

differentiated from a processor as the renderer only shows the widget and supports user interaction,

whereas the processor unpacks the widget and manages installation. A widget renderer may be a stand-

alone application, such as a browser, or may be a webinos-defined component. It is up to the

implementation to actually differentiate between these concepts.

A session ID is created for each session connection between a renderer and a PZP. The format of this

identifier is implementation-specific, but must not contain reserved characters for a URI, as specified in

RFC 3986 ([RFC3986]).

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 28 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.2.3 Relationships betw een entities

2.2.3.1 Core entities

The following diagram explains the cardinality and relationship between each entity described in this

section.

Figure 6 : Core Entity Relations

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 29 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.2.3.2 All entities

The following diagram explains the cardinality and relationship between almost all webinos entities, as

described in the rest of the specifications.

Figure 7 : webinos entity relations

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 30 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

3. PZP - Personal Zone Proxy Specification

 PZP Introduction 3.1

A webinos Personal Zone enables communication between personal devices and services. A P ersonal

Zone comprises of two kinds of entities, a PZH (Personal Zone Hub) and multiple PZPs (Personal Zone

Proxy). A PZH is an entity that runs in the cloud and on a publicly accessible IP address. . A webinos-

enabled device that supports running of webinos services is referred to as Personal Zone Proxy (PZP)..

A PZP can connect to other PZPs in a Personal Zone. To achieve this, a PZP has to be enrolled in the

Personal Zone. Once enrolled, the PZP is capable of connecting to the PZH, connect to peer PZPs inside

and outside the Personal Zone. A PZP can also be hosted in the cloud to provide services such as a

context database.

A PZP is a composition of different functionalities. It is a TLS client to the PZH and Peer PZPs, and hosts a

TLS server to allow peer PZPs to connect to it. It provides similar functionalies as a PZH in terms of

routing, policy enforcement, service discovery, and synchronization. The PZP is also capable of running

in the cloud. A PZP differs from a PZH, in that it is capable of hosting services and executing the remote

RPC calls but cannot perform enrolling and revocation of a device in the Personal Zone.

All PZPs whether on device or in cloud should be run as a daemon/service on a webinos-enabled device

so as to allow connections to other devices in the Zone, when requested. A PZP has various modes of

operation, which define its authentication and other states. These modes include states when the

device is not enrolled in Personal Zone, connected to PZH, and connected to peers. PZPs also provide a

set of user preferences including port configurations, synchronisation and connection options.

In this specification the following PZP functionalies are covered:

¶ PZP TLS client and server connection
¶ PZP modes and states
¶ User Preference options

3.1.1 PZP TLS Client and Server Connection

A PZP is a client to a PZH TLS server, it connects to PZH to route and synchronise with other peer PZPs. In

a local area network, the PZP can connect to any peer PZPs directly without aid from the PZH using local

discovery mechanism such as ZeroConf. However in remote scenario where to connect a PZPs in the

same Personal Zone, it has to rely on the routing service provided by the PZH. Once enrolled and

synchronised the PZP can work on its own in offline scenarios.

3.1.1.1 TLS Servers on the PZP

Port 8040, if changed, the PZP should update the PZH

Description
Incoming connections from PZPs (zone devices) as well as connections from external

(friend) PZPs.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 31 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters
rejectUnauthorized = true (unauthorized certificate connection is rejected)

requestCert = true (this is to enable mutual authentication)

Trusted

certificates
PZP CA certificates and trusted external PZH master certificates

Authentication

Entities with PZP certificates that are not recognised must go through the peer-to-

peer certificate exchange process

Entities with PZP certificates from other Zones are assumed to belong to the user

connected to the PZH CA certificate in the chain

Entities with PZP certificates from the Personal Zone are assumed to be the same user

3.1.1.2 Outgoing TLS connections on the PZP

Port Random port

Description Outgoing connections to other PZPs and PZH

Parameters

Trusted

certificates

Just the certificate of the PZP CA that is being contacted, if they are known. If not,

then just our own CA certificate.

Authentication

The remote party must use the expected certificate, if there is one expected.

If the remote party is new (e.g. it is never connected before andno certificate is

known) follow the peer-to-peer certificate exchange process

The remote party user identity must be mapped to the identity of its master CA

certificate

3.1.2 PZP Identity

A PZP is assigned an identity that is bound to its owner's identity. An identity assigned to the PZP takes
form of the PZH identity followed by the device name, as described in the

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 32 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Entities section 0.

3.1.3 PZP Modes - Connection States

The PZP can be in several different states depending on whether it is connected to a PZH or not and

depending on whether it already has been enrolled in the Personal Zone.

1. Virgin Mode: This is a special case that occurs before a PZP enrolment. A PZP that is not enrolled
cannot connect to the PZH, because it does not have certificates which allow it to establish a
TLS connection with the PZH. A PZP can still operate and provide local services but cannot
connect to the other PZPs in the Personal Zone.

2. Hub Mode : This is the mode where the PZP can connect to the PZH and has been enrolled with
the PZH.

3. Local Peer Mode: This is a mode where PZP can connect to other PZPs directly using a local
discovery protocol. If connected to the PZH it gets information about peer PZPs.

These states, as well as intermediaries, are shown in the following state chart:

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 33 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Figure 8 : PZP States

The above state machine shows that in hub mode, a PZP can be in several sub-states depending on

whether it is connected to the PZH at that particular time.

3.1.3.1 Virgin mode

This mode is a special case that occurs before PZP enrolment. This mode specifies that a PZP has not

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 34 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

connected to any Personal Zone and has not been issued a certificate. A PZP trying to connect to PZH for

the first time will be in virgin mode, and after retrieving certificates it will move into hub mode.

A PZP in virgin mode can be in these possible states:

1. Virgin: The PZP has tried to connectto the PZH but failed to get the certificates or it has not
tried to connect at all. To move to a connected state, it tries to resolve the the DNS address of
PZH provider and if successful goes into connecting state.

2. VirginConnecting : The PZP has started connecting to the PZH, depending on the devices
involved, this state could last a long time (Mobile connection) or just be a transition state
(lasting lesds than a second). After connection timeouts or in the case that authentication fails
(e.g. socket hangup) the PZP will go back to the 'Virgin' state. If the connection is successful and
the PZP authenticates to the PZH it will move to the VirginConnected state. In connecting state,
a PZP will go through the authentication and enrolment process.

3. VirginConnected : This temporary state allows the PZP to download permanent PZP certificates
from the PZH and store them. When this has been done successfully, the PZP can re-connect to
the PZH and enter hub mode. If there is an error of any kind it will go back to Virgin mode.

If Virgin mode is successful then device should be issued all the certificates necessary to connect to a

PZH.

3.1.3.2 Hub Mode

PZPs that have received certificates from a PZH are considered to be in hub mode. When a PZP is started

on a device which has been enrolled previously, it begins with the "NotConncted" state.

1. Not connected: The PZP is not connected to the PZH but has the certificate. It is not currently
able to establish socket/IP connection with the PZH. This could be due to the PZH non-
availability or the PZP not having a suitable network connection (for example 3G network not in
coverage and and device is not connected to WiFi either)

2. Connecting : The PZP is triggered manually or automatically to connect with the PZH. If
successful dthe PZP goes in the connected state.

3. Connected : The PZP will be in the connected state depending on the optimisation. In case of
error, timeout or hangup. The PZP goes to disconnected state before going back to ǘƘŜ Ψnot
connectedΩ state. When in the connected state the PZP can trigger a peer connection to be
initialized.

4. Disconnecting: This is a small transition state where clean up operations will take place. After
this the PZP will go into ǘƘŜ ΰnot connectedΨ state

3.1.3.3 Connecting to local peers

A PZP can communicate with peer PZPa if they are in near proximity and have a common

communication method, such as WLAN. This allows PZPs to establish communication with peer PZP

without support from the PZH. This is useful as it eliminates the communication overhead towards the

PZH and could potentially save user money (if a paid communication service is being used for

communication between the PZP and the PZH).

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 35 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Peer communication is triggered by a PZP via JavaScript APIs. This causes the PZP to try and find devices

within proximity using local discovery protocols. Once peer PZPs are found the initiating PZP can

establish communication directly based on the certificates they hold or based on the peer-to-peer

authentication process SHCBK (described in the 5.2 (Personal Zone Key Infrastructure) section).

In addition, a PZP will listen for incoming connection requests from peers, if the user has allowed it. This

is shown on the left-hand side of the state diagram below.

The following state diagram shows the different states that a PZP may be in when establishing

connections with peers. Several peers are able to connect at any time.

Figure 9 : PZP Connection States

3.1.3.4 Connecting to peers through the PZH.

PZPs can communicate with other PZPs by sending messages via the PZH. This will route the messages

appropriately. The PZP is queried by the PZH about the list of other connected PZP's IP addresses and

port they are connected. The initiating PZP can if required connect to the peer directly. This is mostly

useful in scenario when two PZP's have to do media streaming.

3.1.3.5 User Preferences

The PZP has a set of parameters that are user configurable. These configurations have a default

behaviour and if the user wants to change these they can specify changes in these preferences. These

preferences are applicable before the PZP starts connecting to the PZH. Once the PZP is connected the

selected preferences will take effect and any changes after that time will only take affect the next time a

PZP reconnects to the PZH. These preferences dictate the PZP connection behavior such as ports

configuration, preferences for synchronisation, clear application contents, synchronization options and

connection preference(hub/peer).

¶ Synchronisation: The default behaviour is to synchronise all items across PZP's, but user can
select individually what items to synchronise.

¶ Application Content: Applications running on the PZP store their state contents by default. If the
user wishes to delete this data after session ends they can select an option to do that. That will
delete all application contents, once the PZP is disconnected from the peer PZP or PZH.

¶ Connection preference: The PZP connects by default to the PZH, and then based on JavaScript
API invocation it connects to other PZPs in its own Zone. The user can select an option to
connect to PZPs in peer mode by default, with which the PZP will always connect to peers
instead of connecting to PZH. Peers could update the device about certificates and policy via
synchronisation. This preference is done as per PZP.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 39 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 RPC 3.2

3.2.1 Introduction

This section describes the RPC mechanism and protocol used in webinos. This section also describes the

dependencies between RPC and the messaging specification since RPC objects are sent as payload of

messaging packages rather than, for example, direct requests on a RESTful interface. This also means

that the RPC part of a call to a remote system follows the JSON-RPC 2.0 specification but together with

messaging part it does not. Thus, it will not be possible to post just a JSON-RPC message to an endpoint

in order to get it executed. In addition the webinos messaging must be wrapped around the calls.

In addition to the general RPC protocol and field encoding specifications this section also lists all RPC

messages that are transmitted between webinos entities. This especially means that this section

provides the mapping between webinos JavaScript APIs and RPC calls.

3.2.2 RPC protocol definition

The webinos RPC protocol should be compliant to JSON RPC 2.0 as specified at

http://jsonrpc.org/spec.html. Readers are required to be familiar with the JSON RPC version 2.0

specification.

3.2.2.1 webinos RPC Requests

According to JSON-RPC 2.0 a RPC request object needs to have four members that are briefly described

as:

¶ jsonrpc A String that represents the protocol version used. It MUST be exactly "2.0" when using
webinos.

¶ method A String containing the name of the method to be invoked. The naming scheme used in
webinos is described further later.

¶ params A Structured value that holds the parameter values to be used during the invocation of
the method. This member MAY be omitted.

¶ id An identifier that MUST contain a String, a Number, or NULL value if included.

The method field itself is encoded using three parts as follows:

method: <type>@<instance>.<function>

¶ <type>, a service type identifier that matches the service type followed by a '@' symbol, for
example as used to select a service while using the findService() method of the webinos service
discovery API

¶ <instance>, a service instance identifier that specifies the service to be used followed by a '.'
symbol; this is used to prevent ambiguity in the cases where multiple services of the same type
are available

¶ <function>, a method identifier that specifies the method that should be invoked on the target
service

http://jsonrpc.org/spec.html

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 40 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The <instance> value is not further specified and can be implementation specific. It must be a locally

unique identifier of the related service so that RPC calls can be uniquely assigned to a specific service.

For example if on a PZP two services of the same type are available then the <instance> must be

different in order to select the desired service for invocation. The <instance> value must be propagated

by any service discovery function so that client side service bindings know about the service type and

the service instance id (see ServiceDiscovery RPC protocol). In addition the actual method, must be used

to create the method field of the RPC request for service invocation requests.

Following a full generic request message format, an example is provided, which invokes a function called

exampleFunction of an example service with type http://webinos.org/api/example on a PZP. The actual

service address in terms of the PZP where the service is running on is not part of the JSON-RPC message.

It is handled through the messaging layer as shown in the next example.

Generic message format

JSON: Object

{

 id: <id>

 jsonrpc: "2.0"

 method: <type>@<instance>.<function>

 params: {

 <param1>: <value1>

 <param2>: <value2>

 }

}

To summarise the syntax of webinos RPC calls, as described above: id is a locally unique id created by

the origin of an RPC request so that the responses can be mapped to requests. The id field can be

omitted if responses are not expected. jsonrpc is the static version info field which MUST not be other

than "2.0". params is a RPC message specific object that may contain any JSON data and is used as input

parameters for the invoked method.

Example about how it may look in an implementation

JSON: Object

{

 id: "2"

 jsonrpc: "2.0"

 method:

" http: //webinos.org/api/example@6e6885b25a7ddb5f4658e7a599d1fc17.exampleF

unction"

 params: [

 "example result"

]

}

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 41 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

In this example the params field is an array of length 1 which is used for a function that just takes one

argument. The method field consists of the three parts: a service type and instance identifier as

described above and the exampleFunction function that should be invoked at the target service.

The example above only shows the RPC part of the message transaction. A full example that also

includes messaging and routing information is given below.

JSON

{

 from: "PZ_Name/example_Pzp/0"

 id: 33

 payload: {

 id: "2"

 jsonrpc: " 2.0"

 method:

" http: //webinos.org/api/test@6e6885b25a7ddb5f4658e7a599d1fc17.exampleFunc

tion"

 params: [

 "example input parameter"

]

 }

 resp_to: "PZ_Name/example_Pzp/0"

 to: "PZ_Name/example_Pzp"

 type: "JSONRPC"

}

This shows that a RPC containing routing info relies on the messaging part which needs to know the

address of the service in order to forward the RPC request to the desired PZP. This information must be

provided by the service discovery module (see detailed service discovery API protocol in order to add

the service address information. This information is added when the RPC module creates JSON-RPC

messages that should be sent to another PZP or PZH using the messaging and session components of

webinos. Detailed information about the messaging related attributes of the JSON structure can be

found in the Messaging and Routing specification.

3.2.2.2 webinos RPC Requests with subscriptions

JSON-RPC has inbuilt support only for request/response or notification messages. It does not support an

integrated mechanism for recurring responses where one request can result in multiple responses over

time. For example the W3C Geolocation API provides a method called watchPosition. The method takes

a position update listener as input argument that is called every time the position changes. Using JSON-

RPC without additions would mean that the listener can only be called on time because afterwards the

response message id would become invalid. This occurs because the receiver of the response can delete

the id from the stack of awaiting responses which then results in the inability to match additional

responses to the desired listener.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 42 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

In the webinos platform it is allowed to use the ID of a request message as receiver selector for

subsequent request messages that were made in response to the original request. This basically allows

for a subsctiption based scheme within JSON-RPC where answers to a specific JSON-RPC request are

sent also as JSON-RPC request but including a specific selector. The selector allows choose of the correct

original requesting object. In this case IDs will be valid until either the subscription is canceled,

connection to the service was lost, or until the service is unbound. or connection to the service was lost.

In the case of the subscription being cancelled this can occur if the involved API invokes unsubscribe,

clearWatch, removeEventListener or similar calls.

The approach is described using the following example.

The method addEventListener is a function that returns some data on a regular basis which can change

over time. Instead of implementing this as a synchronous return of a direct result it instead returns

results using a listener pattern. Thus, multiple results can be provided to a callback. The message below

invokes the addEventListener function a "http://webinos.org/api/example" service. The function takes a

callback that is used to provide the results back to the caller, for example void

addEventListener(EventListener callback).

On the client site the RPC implementation needs to record that calling addEventListener can return

multiple responses as JSON-Request messages. The id of the JSON-Message ("2") must be used for all

answers related to this callback registration.

RPC-Request for Listener pattern:

payload: Object

{

 id: "2"

 jsonrpc: "2.0"

 method:

" http: //webinos.org/api/test@6e6885b25a7ddb5f4658e7a599d1fc17.addEventLis

tener"

 params: nul l

}

RPC-Response as JSON-RPC Request message for listener pattern:

payload: Object

{

 jsonrpc: "2.0"

 method: "2.onEvent";

 params: {

 "msg":"example result"

 }

}

payload: Object

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 43 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

{

 jsonrpc: "2.0"

 method: "2.onEvent";

 params: {

 "msg":"another example result"

 }

}

The method for the callback (like onEvent) depends on the methods exposed by the callback object

(here referenced with ID 2) on the request side. Thus other methods may be callable too on the object

while using the same id.

payload: Object

{

 jsonrpc: "2.0"

 method: "2.onAnotherFunction";

 params: {

 "result": {

 "atr1": 1

 "atr2": 2

 }

 }

}

3.2.2.3 webinos RPC Responses

The following is an example response to the request made in the previous section, i.e., a positive result

of invoking exampleFunction.

¶ jsonrpc is again the JSON-RPC version identifier that MUST be set to "2.0".
¶ id MUST match the provided RPC request id so that the response can be matched against

requests being made previously.
¶ result is an object that contains any JSON structure and represents the result of the method

invocation. In this case it is just a String.

JSON

{

 jsonrpc: "2.0"

 id: "3"

 result: "22 somet hing to echo"

}

3.2.2.4 webinos RPC errors

In case of any errors occurred at the RPC server, either internal RPC errors like "method not found" or

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 44 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

an error callback of an API, negative responses need to be created and sent back to the requester using

following format that follows the JSON-RPC specification 2.0.

JSON Object contains the attributes of

¶ jsonrpc with a value of "2.0"
¶ id which is the identifier of the corresponding request
¶ error which is an object describing the occurred error in more detail

The error attribute itself consists again of three attributes

¶ code which is either a RPC protocol specific code as defined in the JSON-RPC specification v2.0
(for example -32601 "Method not found") or the webinos specific error code -31000. Code -
31000 must be used when an API specific error is provided as result of a method invocation.
Basically if an API throws an Exception or returns with calling an error callback as defined in the
API.

¶ message which is either a message related to the code field as specified in the JSON-RPC
specification v2.0 or "Method Invocation returned with error" if code is set to -31000

¶ data which is an API specific error object that should be provided to the original API caller either
by throwing an exception or be invoking a related error callback which is registered with the ID
of the message.

An example for a webinos specific error is shown below. The data field contains a W3C DOMError,

namely the "NotSupportedError" error, which should be forwarded to the original requester that may

await a success callback,an error callback, or an exception to be thrown. The original requester from an

API point of view will only receive the object stored in the data attribute as the input of the error

callback.

JSON

{

 jsonrpc: "2.0"

 id: "2"

 error = {

 data: "NotSupportedError",

 code: - 31000,

 message: 'Method Invocation returned with error'

 };

}

3.2.3 Mapping JavaScript APIs to RPC messages

For each JavaScript call a related RPC mapping must be defined to realise the RPC binding. In this section

a general approach of mapping APIs to RPC messages is described that must be used if possible. For API

functionalities where a mapping is not trivial and cannot be described in a generic way, the differences

and the full messages needed are specified respectively.

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 45 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Possible cases where a simple mapping cannot be given are descrived below:

¶ Supporting functions where additional and not directly JS API call related RPC messages will be
defined where suitable. An example is pre-fetching all static attributes of the Sensor API with
one RPC message during binding to the service rather than using one synchronous message for
each attribute when it is accessed. This allows much better bandwidth usage and response
times for accessing just static attributes.

¶ Since the JSON-RPC protocol is a stateless protocol additional attributes may be needed by
certain services to match client side and server side objects to be used for executing methods
declared within the RPC messages. For example calls of the DeviceStatus API are more like
atomic calls. When a request is made and one result is provided, no state information is needed.
For other APIs kind of state information is needed, for example exactly on which File object a
read/write operation should be performed. This information is not reflected in the JavaScript
API (and must not) but it must be transmitted within the RPC messages.

After the general descriptions of the mappings and concrete additional messages, at the end of this

section two full examples are listed, the Discovery API as well as the Generic Sensors API.

As described in the previous sections each RPC call comply with JSON-RPC 2.0. Some elements are set by

a compliant JSON-RPC implementation itself, for example the 'id' and the 'jsonrpc' field, so that they are

not listed again for each of the following examples. Only the relevant parts of the messages are shown.

The service instance identifier, as introduced in the previous section, is also abbreviated using following

the term <instance>.

3.2.3.1 Mapping Function Calls

3.2.3.1.1 Invoking a Remote function

3.2.3.1.1.1 Mapping function names

The <function> field of the RPC message that represents the function invoked at the target service must

be mapped as follows

<function> = <InterfaceName>.<functionName> where

¶ <InterfaceName> is the name of the related JavaScript interface of the API
¶ <functionName> is the name of the function that is called

Example

WebIDL the launchApplication() function of the AppLauncherManager interface

JSON: Object

{

 method:

" http: //webinos.org/api/applauncher@<instance>.AppLauncherManager.launchA

pplication"

}

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 46 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

3.2.3.1.1.2 Mapping parameters

Input parameters of functions must be encoded in a JSON object which is assigned to the params field of

the RPC message. The object must contain all parameters that are specified in the relating JavaScript API

as mandatory and use the same parameter names as attribute names. Optional parameters can be

omitted, and success and error callbacks must be skipped because they are handled separately by the

RPC protocol as described above.

Example

WebIDL: void launchApplication(VoidFunction successCallback, ErrorCallback errorCallback,

DOMString applicationID, sequence<object> params)

JSON: Object

{

 method:

" http: //webinos.org/api/applauncher@<instance> .AppLauncherManager.launchA

pplication"

 params: {

 appURI: " http: //www.example.org"

 }

}

3.2.3.1.2 Callbacks

Both error callbacks and success callbacks must contain exactly the data structure as defined in the

related JavaScript API specifications in their respective data fields. For error callbacks the data attribute

of the error field and for success callbacks the result field.

Example

WebIDL: callback AppInstalledCallback = void (boolean result);

JSON

{

 result: result

}

WebIDL: callback ErrorCallback = void (DOMError error);

JSON

{

 error = {

 data: error,

 };

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 47 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

}

3.2.4 List of additions to general mappings

This subsection lists additions needed by some APIs which can not be reflected in general, for example

for APIs where some state information is needed to match client and server side objects. webinos

compliant RPC implementations must not rely on any other addition to the general mapping than the

ones listed here.

3.2.4.1 Service Discovery API

3.2.4.1.1 FindCallBack.onFound

In addition to the service attributes that must be provided according to the general mapping scheme an

additional parameter is provided for internal use.

¶ serviceAddress which is the address of the PZP that hosts the found service. This parameter will
be used in subsequent calls to the service so that RPC requests can be routed to the desired PZP
and service endpoint.

The serviceAddress must not be provided to application developers.

3.2.4.2 File APIs

This section specifies RPCs made by the File API (incl. Writer, and Directories and System).

Types

This RPC specification includes the following recurring types, later denoted by <name>.

FileSystem

{ name : "default" }

Entry

{ name : "file"

, fullPath : "/directory/file"

, filesystem : <FileSystem>

, isFile : true

, isDirectory : false

}

Service

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 48 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

All three file-related specifications are merged into a single service interface, whose operations

are further described below.

requestFileSystem

Request

The params include the required type , i.e., 0 (temporary) or 1 (persistent), and size in bytes,

e.g., 1024 .

JSON: Object

{ id : 1

, jsonrpc : "2.0"

, method :

" http: //webinos.org/api/file@<instance>.File.requestFileSystem"

, params :

 { type : 1

 , size : 1024

 }

}

Response

JSON: Object

{ id: 1

, jsonrpc: "2.0"

, result: <FileSystem>

}

resolveLocalFileSystemURL

Request

JSON: Object

{ id : 2

, jsonrpc : "2.0"

, method :

" http: //webinos.org/api/file@<instance>.File.resolveLocalFileSystemURL"

, params : { url :

"webinos: http: //travelapp.webinos.org/persistent/italy.route" }

}

Response

JSON: Object

{ id: 2

, jsonrpc: "2.0"

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 49 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

, result: <Entry>

}

getMetadata

Request

JSON: Object

{ id : 3

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.getMetadata"

, params : { entry : <Entry> }

}

Response

JSON: Object

{ id: 3

, jsonrpc: "2.0"

, result:

 { modificationTime : "2012 - 01- 01T12:00:00.000Z"

 , size : 1024

 }

}

moveTo

Request

JSON: Object

{ id : 4

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.moveTo"

, params :

 { source : <Entry>

 , parent : <Entry>

 , newName : "newx"

 }

}

Response

JSON: Object

{ id: 4

, jsonrpc: "2.0"

, result: <Entry>

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 50 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

}

copyTo

Request

JSON: Object

{ id : 5

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.copyTo"

, params :

 { source : <Entry>

 , parent : <Entry>

 , newName : "newx"

 }

}

Response

JSON: Object

{ id: 5

, jsonrpc: "2.0"

, result: <Entry>

}

remove

Request

JSON: Object

{ id : 6

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance> .File.remove"

, params : { entry : <Entry> }

}

Response

JSON: Object

{ id: 6

, jsonrpc: "2.0"

, result: null

}

getParent

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 51 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Request

JSON: Object

{ id : 7

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.getParent"

, params : { ent ry : <Entry> }

}

Response

JSON: Object

{ id: 7

, jsonrpc: "2.0"

, result: <Entry>

}

getFile

Request

The params include options which specify if the requested file should be created (create), and

if the creation should be exclusive .

JSON: Object

{ id : 8

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.getFile"

, params :

 { entry : <Entry>

 , path : "bar"

 , options :

 { create : true

 , exclusive : false

 }

 }

}

Response

JSON: Object

{ id: 8

, jsonrpc: "2.0"

, re sult: <Entry>

}

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 52 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

read

Not yet specified. This will include setting up a channel for pausable reading.

write

Not yet specified. This will include setting up a channel for chunked writing.

truncate

Request

JSON: Object

{ id : 11

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.truncate"

, params :

 { entry : <Entry>

 , size : 0

 }

}

Response

JSON: Object

{ id: 11

, jsonrpc: "2.0"

, result: null

}

getDirectory

Request

The params include options which specify if the requested directory should be created

(create), and if the creation should be exclusive .

JSON: Object

{ id : 12

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.getDirectory"

, params :

 { entry : <Entry>

 , path : "bar"

 , options :

 FP7-ICT-2009-5 257103

webinos phase II architecture and components page: 53 of 345

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 { create : true

 , exclusive : false

 }

 }

}

Response

JSON: Object

{ id: 12

, jsonrpc: "2.0"

, result: <Entry>

}

removeRecursively

Request

JSON: Object

{ id : 13

, jsonrpc : "2.0"

, method :

" http: //webinos.org/api/file@<instance>.File.removeRecursively"

, params : { entry : <Entry> }

}

Response

JSON: Object

{ id: 13

, jsonrpc: "2.0"

, result: null

}

readEntries

Request

JSON: Object

{ id : 14

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.readEntries"

, params : { entry : <Entry> }

}

Response

