webinos project deliverable
Phase Il architecture and components

September 2012

This work is partially funded by webinos, an Euhded project under the EU FP7 I€Togramme, No 257103.

This report is a public deliverable of the webinos project. The project members will review any feedback received; ufidates wi

be incorporated as applicable. The webinos project reserves the right to disregard your feedback explanttion. Later i

1

the year, update to the report may be published on www.webinos.org as well as being made available as a live and community

maintainable wiki.

If you want to comment or contribute on the content of the webinos project and its delbles you shall agree to ma
available any Essential Claims related to the work of webinos under the conditions of section 5 of the W3C Patent H
exact Royalty Free Terms can be founchép://www.w3.org/Consortium/PatentPolicy20040205/

This report is for personal use only. Other individuals who are interested to receive a copy, need to reg
http://webinos.org/downloads For feedback or further questions, contagditors@webinos.org

DISCLAIMERrebinos believes the statements contained in this publication to be based upon information that we consider reliable dioy
not represent that it is accurate or complete and it should not be relied upon as such. Opinions expressed are currerstagpofithe datd
appearing on this publication only and the information, including the opinions contained herein, are subject to changé naticeu Use of
this publication by any third party for whatever purpose should not and does not, absolve sitpafty from using due diligence in verifyi
the publication's contents. webinos disclaims all implied warranties, including, with limitation, warranties of merchgntaifiiness for g

particular purpose. webinos, its partners, affiliates, and repreatives, shall have no liability for any direct, incidental, specia|,

consequential damages or lost profits, if any, suffered by any third party as a result of decisions made, or not madmsotaéien, or no
taken, based on this publication.

ke
olicy; the

ster to

t we

or

Gopyright webinos project © 202 webinos.org

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://webinos.org/downloads
mailto:editors@webinos.org

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:2 of 345

Abstract
This deliverable describes in detail the system architecture of the Phase Il webinos platform.

The primary areas covered in this deliverable are the detailed technical specifications for all
major components of a webinos system; including Bersonal Zon@roxy (PZPRersonal Zonélub
(PZH), common components of both PZPs and PZHs, and also the application interface.
include an informative specification section detailing how some ofdbponents work togethe
and can be deployed.

This deliverable does not include specification of the webinos API's, neither does it addre
security and privacy issues which motivate much of the architecture. Those aspects of the w
platform are covered inthe phase Il API specifications arsecurity framework dliverables
respectively.

This deliverable consists of six separate-sattionsand a Glossary document

HLSHigh Level Specification

PZP Personal Zon€roxy Specification

PZH Personal Zonklub Specification

CORE Common/Coe Components Specification
APPS Applications Specification

INF- Informative Specification

GLOS Glossary

Keyword list

webinos, Personal Zone PZH, PZPspecification, architecture, foundations, authentication, discove
messaging, context, security,etnics, network overlay, high level architecture, key architectural compone
session creation

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:3 of 345

Contents

1. INTRODUCTION o eeeer e emme e e e e e e e e e e e e e s smmm e e e e eenes 9
1.1 Intended QUAIENCE.......ooiiiiiiiiiiiiee et e s 9
1.2 WRNAL IS WEDINOSZ. ..o e eeeeaees 9
1.3 DOCUMENT STTUCTUIE......cevviiiiiiiiiiiies et irees e e 10

2. HLS -HIGH LEVEL SPECIFICA TION ...t ieeee e eeee 11
2.1 ArChiteCture OVEIVIEWooiiiiiiiiiiiiie ittt eeemt e e e 11
2.1.1 wWebiN0S Personal ZONES..........couuuiiiiiiiiiieieeeeee e 12
2.1.2 WebiN0S 0N the dEVICE........cviiiiiiiiiiie e 18
2.1.3 webinos services and applicatiQns.................uuvuiiicccreeeeiiiiiii e 19
2.2 ENHES. .. 21
pZ % A [011 (o To [FTod 1 o] o NP PP PP PP TR PPRRPP 21
2.2.2 ENUtY DEIINIIONSuiiiiiiiiiiiiiiiee et 21
2.2.3 Relationships between entities.............cccooviiiiiiceee e 28

3. PZP-PERSONAL ZONE PROXY SPECIFICATIONccoiiiiiiiiiiiiiii e 30
3.1 PZP INrOQUCTION ..utiiiiiiiiiiiiiiiiiie ettt 30
3.1.1 PZP TLS Client and Server CONNECHAN...........ccuuvveieeiiiceriiiiee e e 30
0 I e e [0 [T o 11 Y PP 31
3.1.3 PZP Modes CoNNECLION STAES.........cccuuuuviiiiiiiiieeeiiiiiiieiiee e eeeeeeeees 32
3.2 R ettt 39
02 R [o1 (oo [¥ ox 10 o W PO PPPTPPPP PR PRTPRPIN 39
3.2.2 RPC protocol definition...........ccuuuiiiiiiiiiicrie e emme e 39
3.2.3 Mapping JavaScript APIs t0 RPC MeSSages...........cuuuuiiiiiceceeeevnnnnnnnnnnnnns 44
3.2.4 List of additions to general Mappings.........ccovvveeeeeuurrimmmreeeeeeeeeeeeeeennnnnas 47
3.3 PZP DISCOVEIY...cciiiiieeieee ettt e e e bbb e e e s eaere e e 65
G TR 2 R [o1 (oo [F{ox 110 o WP PP PP PP PP PRTRPPP 65

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:4 of 345
3.3.2 Technical Formal Specificatian...............cceeiiiiiiiceciiciee e 66
3.4 Device Ul Adaptation and AWArENESS........ccccvvvveeeeeevviiimmmeeeeeeeeeeennnnennnnanas 78
0 N [o1 (oo [¥{ox 1o o WP PP PP PP P PP TPPTPPPR 78
3.4.2 State Of the Al e 78
3.4.3 Technical SPecCifiCation.............ccoviiiiiiiiiiieee e Q0
N A Y= To (=T pof =R L= o =10 o o1
3.45 Data & COMMUNICALION........uuiiiiieiiiiiiiie e eeer e 92
3.4.6 Platform SPeCIfI@Q.........eeieiiiiiiiii e 96
3.4.7 Ul-Widget: Navigation Bar..............oooiiiiiiieemn e 97
3.4.8 UI-Widget: SPIt VIBW.....oeiiiiiiiiiiieieeee e 102
3.4.9 Fontsize increase on the TV/Vehicle..........cccccooiiiieeiieee 103
3.5 REMOLE Ul USAQE.....cccuuiiiiiiiiiiiiiii et ieeme ittt ssnes s e et e e s e e eaa e e e eann 105
3.5. 1 SPECIHICALION.....eeeiiiiiiiiiiee e 105

4. PZH - PERSONAL ZONE HUB SPECIFICATION ...cooiiiiiiiiiiiiieeeeeeeee e 108
4.1 PZH INTFOAUCTIONveeiiieiiiiiiiiiee e eem ettt rmmee e e e e s e e ean 108
4.1.1 PrecCOnfiQUIAtiON.........ooii ittt e e e eeee e e e e e e e e e e e e e as 108
4.1.2 PZH CONfIQUIALION........uvviiiiiiei et eeee e e e e e e e e e ee e 109
4.2 AUTNENTICALIONeeiiiiiiiiiiiii e 116
4.2.1 User authentiCatioN............ooiiiiiiiiiieeee e e e 116
4.2.2 Device authentiCatiQn............ooooiiiiiiiiiiee e 117
4.2.3 Authentication state machine.............ccccooiiiieeeii e, 120
4.2.4 Actions requiring authentication..............ccoovviiiiieeeii e 121
4.2.5 Initiating OpenID authentication from the PZP................ccooiiceciiiiieeiee, 122
4.2.6 Entity authentication tables.............coooiiiiiiiiccc e 125
4.3 Personal Zone Hub Administration............cooooiiiioiiiiiiiemn e 130
4.3.1 DeVICe ENIOIMENL.... ..ottt emr e e e e e e 130
4.3.2 PZP REVOCALION.......ciiiiiiiiiiiiiteees et seeensssn e e e e e e e e e e e e e ean 137
4.3.3 PZHEXport and IMPOIL......coooiiiiiiiiiiieeee e e 139

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:5 of 345
4.3.4 User preferenCes OPtiON........cccoviiiiiiiiiiiiieeee et er s 141
5. CORE - COMMON/CORE COMPONEN TS SPECIFICATIONcceeoeviiiiiiiies 142
5.1 SYNCAIONISALION.ottt ieeee ettt e e e e e e eeaes 142
5. 1.1 INrOAUCTIONeiiiiiii ettt e e e e e ne e 142
LS00 2 V1Y o T4 4 T SR 142
5.1.3 Items SYNChroniSed...........cooiiiiiiiiiiiiiee e 146
5.1.4 One Way SYNCRMBSALION.........uuuiiiiiiiiiiiieiieeeeeeeee et e e e e e e e e e e e e e ssmmme e e e e e e 146
5.1.5 Connectivity and triggering.............uuuuueeeeeeimimemiiiriieieieeeeeeeeeeeeesemasreeeeeeeeens 149
5.1.6 CoNfiQUIAtiON........ccoeiiiiiiieiiieteeme e e e e e e e e emenans 150
5.2 Personal Zone Key INfrastruCture.........cccoeeeeeeeeiiiiiiiieeee e 151
S I0Z R [o1 (oo [¥{ox 1 0] o WO UPPPP PP TTURRRR 151
5.2.2 Certificate hierarChy OVEIVIEMWoouviiiiiiiiiiieeeeeeee e 151
5.2.3 Key SPeCifiCatiONS.........cooviiiiiiiiiicme e errnr e e e e e e e 155
5.2.4 Certificate eXChanQe............uuuuiiiiiii i eeer e 157
5.2.5 Key Storage INterface........ccoouvuiiiiiiiiiieeee e 162
5.2.6 Key backup and r€COVELY..........ciiiiiiiiiiiiiieeee s eeeeee e 162
5.3 POIICY i et e e e e e e ettt a e e e e e e e as 163
5.3.1 Conceptual arChiteCtULE...........ooiiiiieieeee e 163
5.3.2 AcCesS CoNntrol POICIES..........coiiiiiiiiiiii e 166
5.3.3 Privacy and data handling poliCIES..........ceuviiiiiiiiiieee e 187
5.3.4 Default POHCY....cci ittt 201
5.4 SEIVICE DISCOVEIY...uutttiiiiiiiiiiiiiiiie e e eeeeee ettt ettt e 207
5.4 1 INFOAUCTIONuiiiiiiiiiiieii ettt e e e e 207
5.4.2 Discovery mechanism desSCriptiQn...........ceeeiiiiiiiiiieesieiiieeeee e 207
5.4.3 INra-Zone SErviCe diSCOVELY......ccuuiiiiiiiiiiiiii it e e 207
5.4.4 Session layer message fOrMAL.............eueiiiiiiiieeeiiiiiiiiieeeeee e 211
5.4.5 JavaSCIIPt AP ... e ——— 213
5.5 Messaging and rOULING........ccouviuuuiiieeeiieiimmmreii e e e e et e e e s e esmmmr s e e e e eenaanas 214

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:6 of 345
5.5.1 INrOAUCTIONiiiiiiiii et e e e e e 214
5.5.2 Technical Formal Specificatian.............ccccoeeiiiiiiccciiiccie e eeeees 214
5.5.3 JAVASCHPL APIS ..ot et e e e e e e e e amneaa s e e e e e e e e e e e e e e aeaararnn 225
5.5.4 Dependencies on Other COMPONENLS.............uuurrrrrrimmmiiirrnrieneeereeeeeeeeeeeeans 225
5.6 CONEXE MBNAGEN........ciiiiiiiiiiiiiiii i e e e e e e e annesa s e e e e e e e e e e eeeeeeennnnrnes 226
5.6.1 INrOUCTION........eiiiiiiieiiiiite et e e e e e e e 226
5.6.2 Context FUNCHONAIILY.......cccceiiiiieeeeiieeeieeee e 227
5.6.3 Context Manager Data FIOW OVEIVIEW.ccccuuvvirrimmmniiiiiiiiirieeeeeeee 229
5.6.4 CONEXt VOCADUIANY.......uuiiiiiiiiiiiiiiiii et 230
5.6.5 Deployment DIagram.........cccoiiuuuurrriiiimmmniiiiieeiireeeee e eeseeeesseeseeeeeeeeeeeeeens 232
5.6.6 Message Interception and StOrage.........coeeeeeeiiiiiieeei e 234
5.6.7 CONtEXt QUEIYINGceuvuiiiuiniiiiee e e e e eeeeatiiiia s e e e e e e e e e eeaeesaeeesaaaeaeaaaeaaeeeesnnnnnnns 234
5.6.8 CONEXL RUIES.....ouiiiiiiiii e 235
5.6.9 Scheduled API Calls..........coooiiiiiiiiiee e 236

6. APPS- APPLICATIONS SPECIFI CATION ..cooutiiiiiiiiiiii e 237
6.1 Application Security CONLIOIS...........ouviiiiiiiiie i eeeer e 237
6.1.1 Types Of @PPliCALION.cooiiiiieiiiiii e 237
6.1.2 Application (widget and broves) installation..............ccccccoiiiiieaninnnnnnn. 237
6.1.3 Update of applications and application signatures...............ccccceeeeeeeeennn... 240
6.1.4 Revocation and management of application signatures.................ccceeuu. 240
6.1.5 Application communication with the PZP...............ccoovimiie i, 240
6.1.6 Application communication with external services............cccccvvvvvvieeeneennnn. 241
6.2 webinos Applications and Widget Rurtime specification............cccccccvveeeen... 243
6.2.1 Formal Specification of webinos Application...............ccoovviiieceiieieeeeeennnn. 243
6.2.2 Formal Specification webinos Web Runtime Environment...................... 253
6.3 APPlIcAtioN lIfE CYCIB.. ... 256
6.3.1 Notify web browsers of available widgets...........cccccooiiiiiiieeen i, 256
6.3.2 LIFE CYCIE APL..oeeee e 257

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:7 of 345
6.3.3 Automatic execution of applications..............cccceeiiiiiiecciviiiiiie e 258
6.3.4 Applicationinstallation on multiple devices............ccceevvvvviiireeeeeeeeiiiinnn, 259
(OIS TR Y o] o] [Tor= 14 o] g N VT oo = (= 3O 261
6.36 Application deinstallation..............ooooiiiiiiiemmn e 261
6.3.7 Exposing application functionalities as service to other applications....... 262
6.3.8 Background appliCations............oooiiiiiiiimmee e 266
6.4 Application Runtime State Synchronisation.............ccccceeeeeeiiiiieeeiiic e, 267
6.4.1 REQUITEIMENTSuuiiiiiiiiiiiiiiiie ettt rmmne e eeeeans 267
6.4.2 Operational modes for shared ODJECTS...........uuuiiiiiiiiieeeiiiiiieeeee e 268
6.4.3 Object synchronisationrPtOCOL..........ccoviiiiiiiiiiii e 268
6.4.4 Architectural embedding..............uuuuiiiiiiiccee e 277
6.4.5 Interface for usage of shared objaat$Veb runtime environments.............. 278
6.4.6 Code tabIe........coiiiiiii e 278

7. INF - INFORMATIVE SPECIFIC ATION ..ot eeeireee e 280
7.1 PZH DEPIOYMENL.....ccci it e e e e e e e e e e e anan 280
7.1.1 Deployment OPtiONS......ccooiiiiiiiiiiiiieeee e eeeea bbb e e 280
7.1.2 Current Implementation of PZH.............coooiie e 281
7.1.3 Deployment DIAgram...........uuuuueriiiiiiiiieeeieeieieieeeaee e e e e e e e e s e e e e e e e e e 287
7.1.4 Various component interaction in PZH..................ovvviieie e 288
7.2 PZP Components & Deployment...........cccooiviiiiiiiiiiiee e 292
7.2.1 webinos PZP COMPONENTS......cooiiiiiiiiiiieeee e eeeee e 292
7.2.2 Platform specific implemeation details................ccooeiiiimmmn 295
7.2.3 Service discovery with Web Intents.............ccooei i 302
7.3 Media and Event Real Time Synchronisation................ccoovviiiieceiiiieeeeeeinnnns 304
7.3.1 Cross device real time event synchronisation................cc..eveeeeniiivvnnnne. 304
7.3.2 Media run time SyNChroNiSatiQO............ceuiiiiiiiiiieeeiiieeeeee e rmene s 304
T4 OAULN SEIVICE......cii it e e eeeee e 305
7.4.1 SeqUuENCE QIAQIaM.....ccuiiiiiiieeeee et ee e 306

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:8 of 345
7.4.2 Component and connections diagraml...........cccevrrvriiieeeieeeeeeeeeeeeeeeeeenannnnne 307
7.4.3 Methods definition..........ooiiiiiiii e e e 308
T4 4 OVEIVIEW....cuuuiieeeeeeiiie e e e e eeeemme et e e e e e e e etta e e e e e s aaaneessssbaaseeseessaansaeesnnnneeeesnns 308
7.4.5 EXPOSEd INLEITACES........ci i ittt e e e e e e e e e e e e ns 308
7.5 OpenlD Attribute EXChaNQeouiiiiiiiiiiiiiiii it 312

8. ACKNOWLEDGEMENTS ..o eeer e mmmt e e e e e e eees 313

0. GLOS - GLOSSARY ettt et et e e e nr et e et e e b ————_ 314
9.1 Definitions Of StakehOIAErS.........ccevvviiiiiiiiii e 314
9.2 General DefiNItiONS.ui it e e e mr e e e e e e e e eees 316
LS T B o {0)V 1 01 PRSPPI 339

10. REFERENCES ... ettt et emmt e e et e e e et e e e et e eneeeeeaaaeeeees 342

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:9 of 345

1. Introduction

This documenprovidesthe detailed technical specifications for the webinos platfolinsucceed the
webinos scenario, use cases and requirements specifications [WOS21, WOS22, WOS24, TNi9S25].
specification also forms thavebinos project Phase Il specifications that supersede the project Phase |
architecturedeliverable.Usersand developershoud refer to these documents instead tfe earlier
version

1.1 Intended audience

The primary intended audiencef this specificationis developers of the webinos platform and
developers of webinos applications, as defined in [WOS25, p17, p18]. Other usersayhond these
documents useful include, but are not limited to, webinos enabled device manufacturers, webinos
application service providers and network providers [WOS25, pl7, pl8]. For webinos platform
developers these documents are the complete impletadion guide and the requirements for a
conformable webinoglatform implementation. The developers should refer to these documents during
the development process and any maintenance of and future extensions to the platform. For developers
of webinos apptiations this document provides an insight iftow the platformworksand will help the
developers make the best use of webinos features to enrich their applications in development.

1.2 What is webinos?

Increasingly, users are owning more connected devicesexpecting applications to keep preferences

and status information synchronised across devices in different domains. The purpose of the webinos
project is to define and deliver an open source platform, which will enable web applications and services
to be used and shared consistently and securely over a broad spectrum of connected devices. To
achieve this, it defines and provides an architecture and infrastructure to allow applications to run not
only on a single device, but also across devices and donTadirsapplies to device features as well. New
APIs are also provided to allow access to local and remote device resources and network resources in
the Cloud.

webinos, as defined in [WOS21, pl14] and [WOS22, p6], is a-dwossn platform for secure web
application delivery. These domains include mobile, PCs, home media (TVSs),-@arddevices. It is
specified as middleware installed on a selection of operating systems (OSs) on current devices to enable
the consistent and secure web application user eigraze. At the time of writing the supported OSs

and device platforms include:

1 Android 2.3.x
tested with devices: Nexus S, Asus Transformer Prime, Samsung Galaxy S2, Sonyericsson Xperia
Arc, Galaxy Note
1 Microsoft Windows 7 SP, Windows 7, Windows XP
testedwith laptops: Vaio z11, Dell, Asus EeePC (1215N)
91 Linux: Ubuntu 10.04 LTS, Slackware 13.1, 13.37, Mint, Fedora
tested with devices: VMWare Player, Samsung, Asus EeePC (1215N)
TV variants of Cocom Churchill 177, Acer Revo etc.
vehicle variant of PandaboaRev. A3 with Ubuntu 11.10

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:10of 345

T Mac OS X

The webinos platform includes not only a set of newly defined APIs to enhance current web application
runtime environments, but also an overlay network architecture to enable the webinos specific features.

1.3 Document structure

This document, coverthe architecture and required infrastructure and service components. The
specification consists of 6 sectiQresmch ofwhichcan be treated as a separate entity.

The sections themselves are:

HLS High level specification

PZP- Personal Zon@roxy specification
PZH Personal Zonélub specification
CORECommon and core specification
APPS Applications specification

INF- Informative specification

= =4 =4 -4 -4 -4

webinosAPIs and security are only mentioned briefly where appropriate in these documents to assist
specifying the system architecture and components. They are specified in [WOS34] and [WOS36] in
detail respectively.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:11 of 345

2. HLS-High Level Specification

2.1 Architecture Overview

This chapter describes the welois architecture, which is cemtd around the concept of ®ersonal

Zoneas a means to organise personal devices and services. Each device, whether it be a mobile, tablet,
desktop, smart TV or {oar unit device, i®xtended to enable the device to be a part of tRersonal

Zone Services are the webinos way of exposing APIs. The webinos architecture seeks to make it easier
for web application developers to create applications that span devices of different hardvedferm

and operating systemgd.his is achieved through:

f Logical communication paths based on mutual authentication, and decoupled from underlying
interconnect technologies

1 Simple discovery of devices/services

Simple access to local and remote services

1 Adaptation based on the context of user, device and environment, e.g. day/night, quiet/noisy
and locations

]

Practically, webinos provides web application developers with a collection of APIs. The APIs are specified
in the webinos project deliverable 84.Not only exposed with a set of webinos services implemented

by webinos itself, these APIs also can be realised through 3rd party components. We believe this will
lead to a market for such components as the demand is stimulated by the continuing evolfition o
devices and interconnected technologies. This will, in turn, feed the market for services provided by web
developers.

webinos builds upon the state of the art for web applications. Taking HTML5 and W3C Device APIs
Working Group (DAP) technologies as @nfdation, it extends these concepts to allow for the following:

1 applications which make effective use of the resources on the devices of TV, automotive, tablet,
PC and mobildomains

1 applications which interoperate ovarrange ofliverse device types;

1 applications which can make use of services on other devices owned by the same person and
other people;

1 discovery of services, devices and people, on multiple interconnect technotagiea when
they are not connected to the Internet;

1 efficient communiction that can pass messages over different physical bearers and can make
sensible use of scarce network resources;

1 ensured security with mutual authentication and privacy protectiarebinos features strong
authentication of all devices withinRersonaZoneand betweenPersonal Zore- tackling the
spoofing and phishing weaknesses of the Web head on;

¢ and finally, distributed user preferences and user centric policies in XACML (eXtensible Access
Control Markup Language):

o allowing the user to define whatpplications work on which devices,

o defining privacy preserving policies, defining what information is exposed to other
services, and

o ensuringthat these capabilities are interoperable and transferabémsuring a user
stays in control of his or her deeg and applications.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:12 of 345
2.1.1 webinos Personal Zones

webinos introduces the concept dPersonal Zoneas an overlay network. It provides a basis for
managing the user's devices, together with the services running on them. This also includes personal
services the um uses in the CloudhePersonal Zonsupports:

f Single sigion, where the user is authenticated to a device and applications, and the device is
authenticated to thePersonal ZoneThis avoids the need for establishing direct peering
relationshipsbetween each pair of devices. It also allows for stronger authentication with the
services the user uses. The architecture also allows for situations where the user is offline, e.qg.
when the user is away from home and currently unable to access the Interne

1 Shared model of the context. This covers users, device capabilities and properties, and the
environment. It enables applications to dynamically adapt to changes, and to increase usability
by exploiting the context.

1 Synchronisation across the devicestia zone. This includes support for distributed
authentication, as well as personal preferences, and replication of sespiegfic data, e.qg.
social contacts, and appointmentSynchronisation is essential for supporting offline usage.

1 Discovery and aces to services. This includes local discovery, e.g. of services exposed by the
user's devices, whether connected through-Mj Bluetooth, or USB, as well as remote
discovery for services exposed in the Cloud. The high level discovery API allows Wetedgvelo
to search for all local services, or to filter by service type and context, or even to locate a named
service instance. Remote discovery is based upon existing user names and Email addresses,
resolving to a URI forRersonal Zone

ThePersonal Zonés implemented on a distributed basis, consisting of a siRglsonal Zonélub (PZH)

and multiplePersonal Zon®roxies (PZPdjigurel, as a specification level deployment diagram, depicts
the concept ofPersonal Zonelnside thePersonal Zoneach device installed with a PZP is connected to
the PZH. The PZH is identified by a URL, supporting RESTful APIs throuBRGJORPC]. The ibas
webinos functionalities, service discovery, authentication, and synchronisation, can be carried out on a
intra and inter Personal Zonébase. Sessiowise communication between devices may take place
directly independent of bearer technologies. PZH adAR Rre described in following sabctions2.1.1.1
and2.1.1.2respectiely.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebanS FPZICT-20095 257103

webinos phase Il architecture and components page:13o0f 345

-

Persefal Zone

1) Identified by a URL,
supports a RESTful AP
based upon JSON-RPC »P7H

ey -

PzP
S -
2) Discovery, Authentication, D D D ﬁ

Synchronization

PzP
o’
3) Bearer independent D D D &
communication between
devices

Figurel : Personal Zonge

The webinos overlay network is shownFigure2. The webinos network including its entities is overlaid
upon current Weltechnologies Normally the PZH is hosted by a PZH provider, which provides Cloud
services.The PZPentity resides witha user's device. A TLS session is set up between PZH and PZP,

controlled by security policies.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:14of 345

Mutually authenticated TLS sessions
bind all devices to a cloud agent

PZP

Sl

Figure2 : webinos overlay network

2.1.1.1 Personal ZoneHubs (PZHs)

To enable external access tdParsonal Zonewebinos defines ®eronal ZoneHub (PZH) as a service

that is accessible via the Internet, which is availdhteminally)24x7, unlike personal devices that may

be powered down or out of communications range. There is atomme correspondence between
Personal Zoreand PZHd$ach PZH belongs to only one user. This could for instance, be provided as a
valueadded service to users by ISPs (Internet Service Providers) or it could be integrated in the DSL
router at home. The PZH is identified by a URL. It is part ®?éinsonalZoneand supports access by the
Personal Zonewner from other devices. E.g., when the owner is using a public computerlimeanet

Cafe, the PZH enables him or her to access his oPhesonal Zors devices and services for the
duration of abrowsing session. It also enables access by others, subject to the policies that the owner
has defined.

The PZH further provides support for discovering other PZHs based upon someone's full name,
pseudonym, or Email address. Note that users may choosinibdiscovery, e.g. to people within a
given group, or to prevent discovery altogether, in which case it is up to the user to communicate the
URL for their PZH to others as needed.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:15o0f 345
The bllowings are the critical functions that a PZH provides:

1 A fixed enity to which all messages can be sent to and routedh personal postbox as it were
1 An authoritative master copy of a number or critical data elements that are to be synchronised
between PZPs and the PZH, specifically
o certificates to authenticate PZA&ZHs ofrusted peopleagainst each other
o application identifiers (and/or certificates) of applications granted access into the Zone
o service identifiers (and/or certificates) for trusted services to whichRhesonal Zone
may attach
device identifiersto assist with platform integrity tests
credentials for "non webinos" services to give a pseudo singleosigexperience
all policy rules, for distributed policy enforcement
o all relevant context data
T and the security functions of
o user authentication
o PZPsecure session creation for transport of messages and synchronisation
0 service session creation for secure transport of messages between applications and
services
o secure social networking: using the exchanged certificates betwested people
o potentially,single sigron service to other web services, using the PZH as a secure proxy
1 Context synchronisation: the PZH should act as the master repository for all context data

o O O

2.1.1.2 Personal ZoneProxies (PZPs)

The webinoersonal Zon®roxy runs locally on personddvice. As a satellite proxy it acts like both a
server (when talking to the end user on behalf the PZH) and a client (when talking to the PZH on behalf
of the user and local services and applicatiofifle PZP hosts webinos services and applications,hwhic
makes it a server. The PZP acts in place of the PZH, when there is no Internet access to the central PZH
server. In order to act in its place, information, as already listed above, needs to be synchronised
between the PZPs and the PZH. The fefil*'s most, if not all of the functions of a PZH, when there is

not PZH access. It sits between the webinos runtime environment and the PZH and receives user
requests and gives responses locally to the user, if it can. In addition to the PZH proxy functfanPthe

is responsible for all discovery using local hardware based bearers like Bluetooth, ZigBéNeah-C
Field Communication), etdJnlike the PZH, the PZP does not issue certificates and identities. For
optimisation reasons PZPs are capable of talkimgcty to each other, without routing messages
through the PZH. While a PZH aamy reside in the Cloud or physicalhside a single point ithe user's

home network,every webinos enabled device has a PZP running on it. A PZBIsmamesidein the

Cloud Thisis a special casgalled a'virtual PZP" providing cloud services such as an online contact list,
calendar and so forth.

Figure3 depicts the archiectures for PZH and PZFhePZH and PZP talk with each other with JRPIT,
which is set up over TLS sessionswiils the PZH, the PZP stores authentication certificates, maintains
context data, manages policies, and keeps a known user list.tBetRZH and PZP have functions of
messaging and routing, service discovery and synchronisati@PZP also has tHfanction of peer PZP
discovery.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:16 of 345
PZH PZP
Storage Functions Functions Storage
Authentication certificates Me ssaging M essaging Authentication certificates
& routing & routing
Application list Applications
T Service Service i
Servicelist discavery 5 ON-RPC discavery Services
User list User list
PZP discovery
Policy y Policy
Contest Contest
Synchronisation Synchronisation
TLS

Figure3: PZH and PZP

2.1.1.3 Local connections

One of the featuresprovided bywebinos is a unified local connection service based on physical
proximity, that is doneby making the different interconnect technologies transparent. A webinos
enabled device is able to find any supported interconnected other devices arounithig. overay
network allows different applications and services to talk to each other over these different
interconnect technologiesthis insulatesapplication code from the underlyingetwork details. The PZP
therefore enables applications to access servicesther webinos devices in the sarersonal Zone

Wi-Fi

Bluetooth

LAN PAN NFC Webinos

enabled device

use
ZigBee

Wired
LAN

Figure4 : Local devices connected to a webinos enabled device

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:17 of 345

Figure4 depicts the local connections around a webinos enabled device. Devices in an NFC area, a
personal area network (PAN) or a local area network (LAN) are regarded local, no matter what kind of
bearers they are using. Usually LAN devices have a full IP protocol stack and are running PZPs Examples
are PCs, Wi laptops, smart TVs and-gar units. NFC and PAN deviodéten are not equipped with a

full IP protocol stack and thus have no direct intet access. There is no PZP running on those devices

and they are regarded as namebinos devices. More often, they are deemed as peripherals or peer
devices providing some sort of poitd-point single hop networked services. Examples are USB
keyboards,RFID tags, and smart phones connected via Bluetooth. They expose their services to the
Personal Zonwhich can be used by the connected webinos enabled device.

Devices physicalliocatedin the same area may belong to different users and therefore logicalild
be in different Personal Zore That means localconnection may be established across different
Personal Zoreand users can share services with each dtblly.

2.1.1.4 Synchronisation

webinos provides synchronisation function based on rsync [RSNC]. It involves detecting and merging
differences, and asking the user to resolve conflicts, taking into account periods of offline usage. The
process involves a comparison of clocks as a basiofrecting for skews prior to comparing the time

of each change. The approach is inspired by work on distributed revision control and 3 way merge
algorithms for tree structured data. Synchronisation takes place when a device is enrolled into the
Personh Zoneor when changes occur. This is also coupled with local discovery, to enable a shared
model of the context. For IP based networks, multicast announcements and query responses can be
observed to update a local cache. Synchronisation and secure docésscontext form a crucial part

of the webinos platform. Browsers already support mechanisms for recording preferences and
application specific local storag&ebinos can build upon this with additional database files held as part

of the browser profile and accessible from trusted code in browser extensiahinos may use JSON

files to exchange synchronisation messages.

Synchronisation needs to function even when the device is operating with a subs&ersé@nal Zone

in absence of access to the énhet. This relies on being able to synchronise the devices in a peer to
peer model. Synchronisation depends on being able to merge changes and to detect and resolve
conflicting changes. If the context data model is independent, then one approach isply $ake the

latest change to a particular part of the context. If the context data model has-digpendencies, the
updated model needs to satisfy the integrity constraints.

2.1.1.5 Policies

In webinos policies are written in an XML file. In this file it'ssjiade to specify multiple sets of policies:
every set has a "combine" rule that is used to determine which policy shall be applied, e.g. with the
"first-matchingtarget" combine rule, every request shall be matched against the first policy which
matches tle request's target. The target of a policy could be users, applications, devices or
combinations of them. Policies are expressed in the simplified XACML format defined in [BDAS]
following the grammar provided by WAC. This format has been used as a ldiffisrent specifications

as from W3C DAP and WAC [WCDS].

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:18of 345

Policy management is a service implemented within the PZP. The policy management service enforces
privacy and access control requests and to manage the disclosure of user's personal data antbto cont
the access to the local device capabilities and features. This is done by matching the requests against
written policies in order to determinevhether to allow orto deny the access to the requested
resources.

2.1.2 webinos on the device

A webinos enabledaVice, or webinos device in short, is a device with a PZP running on it, and usually a
webinos Widget Runtime (WRT) environment for running webinos applications. The architecture of a
webinos device is shown Figure5b. In this figure, the webinos entities are installas middleware on

the device. vebinos applications run in the web browser or as a widget rendered on the native device
OsS.

Webinos enabled device

i ——————————————————— ————————————— -

f 1
: Applications i
T N — N
i i 5
= R
= | B
,___‘_‘_‘H_‘_ P w
Web browrser + webinos
runtime f PZP
webinos widget runtime
P N RPC /
| s :\Secure channel 4 5gssion
: a.pphcatmn 1 Man ager
y instances 1
1 WehSocket
o)} --‘/ I J l .|

5l dvf
N2

Mative device O%

Figure5 : webinos device

A webinos WRT is a special type of browser. It should be capable of rendering the latest JavaScript,
HTML and CSS specifications. It is responsible for rendering the Ul elements of the webinos application.
As pat of the WRT, a webinos root object is exposed as part of the global namespace for web page
scripts, and provides the core set of webinos APIs as methods and properties to make use of the specific
device capabilities, thus making the webinos applicatiam aaross different device platforms. Via this

root object, third party developers will be able to ass the webinos functionality. Thveebinos WRT

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:19of 345

differs from a normal browser or web runtime in that all extended JavaScript functions, as well as some
normal browser behaviour (such as XHR) must be mediated by the webinos policy enforcement layer. A
webinos WRT will present environmental properties and critical events to the PZP so that it may process
the security policy and contextual events correctly.

2.1.3 webinos services and applications

2.1.3.1 webinos services

For applications using it, a webinos service is a special webinos API. It provides a collection of functions
and events that are accessible by webinos applicatiofhese functions and events are always
presented to the application developer as a set of JavaScript functions, no matter where the
implementation residesThele exist the following types of webinos services:

1 PZP hosted webinos APIs: APIs that can be accessed remotely by usiiRPISAONe webinos
APl is hosted by a PZP and again access is mediated by a policy manager on the PZPs of both the
caller and the provider.

1 webinos applications providing APIs: an application is a webinos service if it presents external
services as JavaScript APIs. Theiegpn is hosted by the PZP and other applications can make
use of it.

2.1.3.2 Binding, privacy and security

The webinos platform provides each device with a set of APIs for accessing services exposed directly by
the Personal ZoneAn example is the method uséal discover services matching the given service type

and context constraints. The method is asynchronous, and results in callbacks as service instances are
discovered. Application developers can then provide a user interface (Ul) for selecting between
alternatives, where the list is dynamically updated as services become available or cease to be available.
The approach allows application developers to offer users the means to obtain further information
about each of the choices, as well as to record prefees for use in future situations.

The process of binding to a service (having first discovered it) involves:

1 mutual authentication, where theahe authenticates the service, atite service authenticates
the Zone;

1 secure communication through the useaf/ptographic protocols, protecting against
eavesdropping and maim-the-middle attacks, spoofed IP addresses and spoofed DNS records;

f reviewing and granting the request by the service for elevated privileges.

Applications (or embedded services) can requedsvated privileges. This is typically handled when the
application first runs and the user's decision recorded for subsequent uses. Thus the applications are
deemed as services and policies apply. The underlying model is that of notice and consent. The
associated Ul is provided by the webinos platform, and not by the applications. A further Ul is provided
to enable users to review and revoke decisions. The device itself may impose security policies, e.g. white
listing which services may have particulaivjjeges.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:20of 345
2.1.3.3 Extensibility

The webinos APIs are designed for extensibility. It is common to pass an object as an argument to a
method where the object supports one or more interfaces. These interfaces are interpreted by third
party components, and such tdi parties are also responsible for documenting the extensions. Web
developers can call a standard Queryinterface method to cast an object to a named interface, when
necessary to avoid name clashes.

Having been discovered and bound, a service is exposed abject in the web page's script execution
environment. This object acts as local proxy for the service, which may be provided by a remote device.
webinos allows application developers to register a simple callback function, or to pass an object
supporing a given interface, i.e. with a named method that is used as a callback.

2.1.3.4 webinos applications

A webinos application is hosted by a PZP and runs "on device", Wiedevice could also be Internet
addressable, i.e. a server. A webinos application isk@ged, as per packaging specifications, and
executed within the WRT. A webinos application has access to security sensitive capabilities, mediated
by the XACML file specific to the device's policy manager component. A webinos applicayiaiso

expose some or all of its capability as a webinos service. An application developer is granted access to
webinos capabilities via the webinos root JavaScript object.

webinos applications may be downloaded and installed on devices, or they may be hosted/éss,

with components that are dynamically downloaded when needed. Applications can make use of
services, and in turn can provide services. Services may include a Ul exposed as part of an application,
e.g. within an HTML iframe element. The abilitydombine and tailor services is used to support
"mashups". Applications are essentially services that can be installed or bookmarked.

webinos enables the local, clieside adaptation of the Ul of an application based on the device
characteristics. The ad#gtion process takes several of these characteristics into consideration, the
most notable being screen size and resolution, device type and input modalities. To make this possible,
applications will be created with a declarative Ul description that iscdeémdependent. This description

will stay as close to the basic web technologies as possible. At runtime, this description is transformed
into a HTML/CSS/JS layout suited for a web runtime.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:21 of 345

2.2 Entities

2.2.1 Introduction

This section defines the entities withiwebinos and explains how they are named, identified, and
authenticated. In addition, their relationships are outlined.

For definitions of terms other than entities such assynchronisationdiscovery androuting -- please
see theGlossay (sectiom).

2.2.1.1 Names and Addresses

This section is nenormative.

In general, within the realm of computing, names are used by humans and addresses by computers. For
example, awebsite would be referred to asww.ietf.org by a person, buthe network would only

know what to do after it is instructed to send requests for web page84td70.98.30 The process of
converting the identifier of an entity to a computesable addresss called resolving.

2.2.1.2 Issues with online identities

This section is nenormative.

webinos is about securely sharing with others. These others must be known, looked up and addressed.
For one thing, this means that identities play a major role. Nowadays, many users use their GMail or
Facebook accounts as online identities. This complicgatdsers as this breaks the usual internet service
interaction, where the server that delivers a service (email, web, chat, ...) is part of the domain. With
webinos, it is not forseen that Facebook, Apple and others will be ruribéngonal Zonefor usersany

time soon. Hence, this specification contains a mechanism to translate domains used for user identity to
domains used for running the webinos service.

2.2.2 Entity Definitions

2.2.2.1 User

Throughout this document, the term user refers to a person that has a wslitersonal ZoneThis
requires at least a livBersonal Zonélub, run by som@&ersonal Zonélub provider.

Users have names and identities. The current situation with online identities is somewhat confusing, but
here it is assumed that webinos users hawe adentity which takes the form of an OpeniD.

Users SHALL be identified by their OpenlID identity, being either an email address or an URI. The
corresponding name SHOULD be stored so the user can be addressed (by webinos and webinos
applications and widgs) in a nicer manner.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:22 of 345
2.2.2.2 webinos-enabled devices

These are the physical cars, TVs, phones and PCs installed with wal@hossenabled devices are
normal devices with a PZP running on it, and provide a widget renderer if a webinos application runs on
it. We assume a-fo-1 mapping between device and PZP. There is only one PZP on a webinos enabled
device. Nevertheless, the PZP can beagfigured if the device is shared between different persons.

Within the specification the term device is not used.

2.2.2.3 Personal Zone (P2)

ThePersonal Zones the webinos equivalent of a user plus all his webiaoabled devices, or PZBsd
one PZHEach user has exactly one PZ, contaioing PZH andero or more PZPs. Throughout the
webinos specification, the terfRersonal dneor PZ is only used in a néechnical sense.

2.2.2.4 Personal ZoneHub (PZH)

The Personal Zonddub is the main entry point to th@ersonal Zonelt isexpected to be commonly
implemented as aserver on the internet that provides an entry point to a user's RZ.such, it is
nominally considered to balways online even if regular devices may not always be able to reaeh it
and it enforces security. It is identified by that user's identity. Being defined as a web server it has an
address in the form of a URI

In addition, it also provides services related to the administration and management d?Pdtsonal
Zone More specifically, the PZH provided services are:

1 Administration of the PZH, PZPs and devices

1 authentication of PZHs and PZPs

1 secure communication with PZPs in the sdPeesonal Zonand with other PZHs in different
Zones

T synchronisation with PZPs in the saR&rsonal Zone

1 webinos service management

We recommend, where possible, thatPersonal Zondub is given a unique stomain such that two
hubs do not share the same origin. This is beneficial when hoBiftgadministration interfaces as
webpages.

As outlined above, resolving the name of a PZH to an URI has some challenges, mainly because we
expect that thelnternet domain dé the User Identity will be different from thimternet domain of the
PZH. In short, the following mechanisms are used in the stated order:

OpenlD attribute exchange
DNS NAPTR

Webfinger

Lookup service at webinos.org

Hwnhe

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:23of 345

A formal specification of the resolving mechanism can be foumd section 55

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:24 of 345

Messaging and routing

2.2.2.5 Personal ZoneHub Provider (PZH Provider)

A PZH provider is a Service Provider that provides all webinos services as an operator. It provides PZH
services to the end users, though the PZH may physically be installed aedfe premise. Also, users
may act as their own provider.

The provider has no formal role in the webinos specification.

2.2.2.6 Personal ZoneProxy (PZP)
The webinos PZP is a software environment residing on a device. Among others, its tasks are:

1 host applicatbns, both inbrowser and as widgets
1 open up device capabilities as services that implement webinos APls
1 manage secure connections to the PZH and to other PZPs (of the same user or other users)

PZPs have a friendly name. The user SHALL have the oppottursig this name when installing
webinos onto the device. Examples of friendly names are "Peter's phone" and "Georg's PC". The friendly
name MUST be unigue within a single PZ.

Upon installation, the PZP SHALL generate a X.509 certificate. This cetlisfioated as described in
section5.2 (Personal Zon&ey Infrastructure).

PZPs actively connect to their own PZH. This PZH manages the mapping between connetfxi3san
When communicating from PZP to PZP locally, PZPs identify themselves with a combination of the user
identity and their fiendly name. The generated and signed certificates MUST be used to authenticate
this connection.

2.2.2.7 webinos APIs

A webinos API ia collection of methods, events and properties that expose some (combination of)
device capabilities to webinos applications. A webinos API can be mapped to one or more feature URIs
and implemented by webinos servicagebinosAPls are defined using Webl [WID12] and specified
collectively in [WOS34]. They are identified by their name space.

APIs cannot be invoked directly. Instead, their name space can be fed to the findServices function. As a
result of invoking this function, service objects are rekdrmon which methods can be invoked. The
actual services that implement the webinos APIs are either running on the same PZP as the calling
application or on a remoteZP

2.2.2.8 webinos application

As defined in [WOS25], webinos application is "an applicatiottenrusing webinos technologies that
will run on a device, across a range of devices reflecting the domains mobile, fix, automotive or home

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:25 of 345

media and/or server. The application will be able to securely and consistently access device specific
features, commnicate over the cloud and adjust to the device and context specific situation." Generally
there are two categorie®f webinos applicationsweb browsetbased applications and widgets. A
browserbased webinos application is hosted somewhereadPZP oithe Internet and used with a web
browser. A webinos widget is a standalone selfitained web application that is developed dedicated

to a specific OS. Both categories of webinos applications have access to webinos capabilities via the
webinos root JavaScripbbject. A webinos application also has its access to security sensitive
capabilities, mediated by system policy.

A webinos application can expose some or all of its capabilities as a webinos service. A webinos
application should be packaged as specifieddction6.2 (Widget Runtime and ebinos Applications

In terms of security webinos widgets can be further classified as recognised widge®y and
unrecognised widgets (W). The types of webinos ajigations are listed in the following table, where a
browserbased application type is an authenticated oneXB

. Local/ Widget | Delivered L
Type || Runs in) Installed? Authentication
- hosted Manifest? over - -

Hosted 1 TLS certificate, root trusted
(Yes HTTPS |[Yes

B-A || Browser
app cache) browser

Signed widget authenticated

Widget L File 1 widget processor. 'Recognised'
W-R Combination||Yes Yes .
renderer HTTPS per [WAQG. HTTPSraffic only from
recognised origin.
Signed widet, but unrecogniseg
identity [WAQ. HTTPSraffic only
Widget N File 1 from recognised origin. HTTP
W-U Combination||Yes Yes . . .
renderer HTTPS traffic authenticated by widge

runtime OR connected to sar
entity as the widget signature.

The naming schemeonforms to the W3C widget specification [WGT11] for both web browased
applications and widgets. Optionally widgetisay have a name and short name. Browdased
applications may have a name expressed in the title bar.

Applications are identified imonformance with the W3C widget specification [WGT11] for both web
browserbased applications and widgets.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_0
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_1
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_2
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_2
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_3
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_3
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_4
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_4
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_5
http://dev.webinos.org/redmine/projects/wp3-3/wiki/Entity_Definitions#Sort_0_6

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:26 of 345

However, internally webinos may identify an application through a combination of the application's
name and the author's signature attributes. Allptipations signed by a different author will have
different identities.

A webinos application is addressed by a URI, which consists of a PZP ID, widget runtime session ID and a
locally unique application ID.

E.g http://pzh.webinos.com/john.smith%40exampl e.com/pzpSmartTV/63639167/

exampleApplication is a valid webinos application address, whaere
john.smith%40example.com/ pzpSmartTV is a PZP 1053639167 is a session ID with a widget
runtime environment, ancexampleApplication is the local application 1Dplus the PZH provider

prefix, http: //pzh.webinos.com , making it a globally unique application address.

2.2.2.9 webinos services

A webinos servicés a software system implementation of the logical interface defined by an API. The
implementation is always preserdeo the application as cliergide proxy objects, which provide a set

of JavaScript functions, no matter where the implementation residdgere exist two categories of
webinos services:

1 PZP hosted webinos services: they are services that can be acogssrdly by using JSGN
RPC. The webinos service is hosted by a PZP and the access mediated by the PEP on the PZPs of
both the service consumer and the service provider.

1 webinos applications providing APIs: an application is a webinos service if it [gres¢smnal
services as JavaScript APIs. The application is hosted by a PZP and other applications can make
use of it.

In terms of implementation a webinos service is packatjesl anormal webinos applications, using

W3C widget packaging, but has no usseiface. Its entry point is a JavaScript main() function (as
opposed to a start page). A webinos service runs continually in the background. A webinos service can
be optionally be configured to autostawhen the host device starts. ebinos services onlgun in the

context of a PZP, never in the context of a PZH.

webinos services are named as their API types. E.g. for the webinos File service, which is a webinos File
API, its name isttp: //webinos.org/apiffile . Different service implementations may hatree
same service hame, as long as they implemented the same service, which is a webinos API specification.

webinos services MAY have attributes defining aspects of their implementation, such as who provided
them or where they reside.

A webinos service iglentified by a URI, which consists of a PZP ID and a locally unique service ID. E.g.
http: //pzh.webinos.com/john.smith%40example.com/pzpSmartTV/7493754 is a valid
webinos service 1D, wheliehn.smith%40example.com/pzpSmartTV is a PZP ID, arth93754 is

the local service ID, plus the PZH provider prdii&y: //pzh.webinos.com , making it a globally
unique service ID.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:27 of 345

For applications, a webinos service is not directly addressed. It is communicated through -gidéent

proxy object.Inthe webinos architectte, a webinos service ID is also its address. A service consumer is
able to address the service by its ID. By parsing the ID the consumer gets the PZP address and the local
service ID, and locates the service.

For applications, webinos services are resolved with the webinos Service Discovery API through the
findServices() call, which returns a collection of clieside proxy objectsThese are then used to
address the service.

2.2.2.10 webinos widget renderer (Also known as "Widget Runtime" or WRT)

This section is nenormative.

Widget Renderers are the GUI element on each device capable of displaying a Widgeterer is
differentiated from a processoras the renderer only shows the widget and supports user intevacti
whereas the processor unpacks the widget and manages installation. A widget renderer may be a stand
alone application, such as a browser, or may be a wehiefised component. It is up to the
implementation to actually differentiate between these cemts.

A session ID is created for each session connection between a renderer and a PZP. The format of this
identifier is implementatiorspecific, but must not contain reserved characters for a URdpesifiedin
RFC 3986 ([RFC3986]).

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

awebinos

webinos phase Il architecture and components

2.2.3 Relationships betw een entities

2.2.3.1 Core entities

FP7ICT-20095 257103

page:28of 345

The following diagram explains the cardinality and relationship between each entity desarilbieid

@User
ma
T
7‘ as account with
f '
[
| \ @PersonalZoneHubProwder
| | has
|’ | PersonalZoneHub[] hubs
\
[;
|
f osts
/ '
| Y
| @PersonalZoneHub
|
RegisteredPzps|] pzps ses
| File policyFiles
|
|
ave is enrolled with /synchronises and routes messages between
ny any
©Persona\20neProxy
Certificates certs[]
WebinosService services[]
!
proxies API invocations
'kl
ny . L
@ WebinosApplication
runs on @A"pﬂum’me String name
| URI identifier
Qrigin recognisedOrigin
|L mal 1’ I
\ ‘| many
runs on instantiates contains calls methods on
|
ny
any

@ ClientProxyQbject

@WebimosEnabledDewce \
| APl implements
\ String temporaryldentifier

Object identifier \

\ manlw

\
supports runtime instance of
any

@WebmosSeNlce

Stringl] attributes
UR| identifier

mplements

;L
@ 2n

URI identifier

Figure6 : Core Entity Relations

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

rogrammed against

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:29of 345

2.2.3.2 All entities

The following diagram explains tlwardinality and relationship between almost all webinos entities, as
described in the rest of the specifications.

Figure7 : webinos entity relations

This work is partially funded by webinos, anfidblded project under the EU FP7 IBXbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:30of 345

3. PZP- Personal Zone Proxy Specification

3.1 PZP Introduction

A webinogPersonalZoneenables communication between personal devices and servides. Arsonal
Zone comprises of twkinds ofentities, a PZHRersonal Zondélub) andmultiple PZR (Personal Zone
Proxy). A PZH is an entity that runs in the cloud ané pnblicly accessible IP addressA webinos
enabled device that supports runningwébinosservices is referred to as Personal Zone Proxy (PZP).

A PZRcan connect to other PZPs inP&rsonal ZoneTo achieve this, a PZP hasbe enrolled inthe
PersonalZone Once enrolled, the PZP is capable of connecting to the PZH, connect te4f@rside
and outside thePersonal ZoneA PZP can also be hostedtihe cloud to provide services such as
context database.

A PZP is a composition of different functdities. It is a TL&ient to the PZH and Peer PZPsg &osts a
TLS server to allowepr PZPs to connett it. It provides similar functionalieas a PZHh terms of
routing, policy enforcement, service discovery, ayhchronization. The PZP is alspatae of running

in the cloud. A PZP differs from a P#&Hhatit is capable of hosting services and executing the remote
RPC calls but cannot perform enrolling aadocation of a device in theersonal Zone

All PZPs whether ottevice or in cloud shodlbe rin as a daemon/service on a webiresabled device

so as to allow conraions to other devices in theoBe, when requested. A PZP has various modes of
operation, which define its authentication and other states. These modes indtates when the
device is not enrolled ifPersonal Zoneconnected to PZH, and connected to peers. PZPs also provide a
set of user preferences including port configurations, synchronisation and connection options.

In this specificatiothe following PZP functionalies arevered

1 PZP TLS client and server connection
1 PZP modes and states
1 User Preference options

3.1.1 PZP TLS Client and Server Connection

A PZP is a clientto a PZH TLS server, it connects to PZH to route and synchronise with other peer PZPs. In
a local area network, the PZP can conneciny peer PZBdirectly without aid fromthe PZH using local
discovery mechanism such as ZeroCétdwe\er in remote scenariavhere to connecta PZR in the

same Personal Zoneit has to rely on the routing service provided by the PZH. Once enrolled and
synchronsed the PZP can work ais own in offline scenarig

3.1.1.1 TLS Servers on the PZP

Port 8040, if changd, the PZP should updatide PZH

Incoming connections from PZPs (zone devices) as well as connections from

Description .
P (friend) PZPs.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:31of 345

rejectUnauthorized = true (unauthorized certificate connection is rejected)

Parameters . L
requestCert = true (this is to enable mutual authentication)
Trusted . -
e PZP CA certificatemdtrusted external PZH master certificates
certificates

Entities with PZP certificatabat are not ecognisedmust go through the peeto-
peer certificate exchange process

Authentication |Entities with PZP certificates from othépnes are assumed to belong to the u
connected to the PZH CA certificate in the chain

Entities with PZeertificates from thePersonal Zonare assumed to be the same u

3.1.1.2 Outgoing TLS connections on the PZP

Port Random port

Description Outgoing connections to other PZPs and PZH

Parameters

Trusted Just the certificate of the PZP @#at is being contactedif they are knownlf not,
certificates then just our own CA certificate.

The remote party must use thexpectedcertificate, if there is one expected

If the remote party is new (e.gt is never connected before and certificateis
Authentication |lknown) follow the peetto-peer certificate exchange process

The remote party user identity must be mapped to the identity of its maste
certificate

3.1.2 PZP ldentity
A PZHsassignednidentity that is bound tats owner's identity. An identity assigned to the RA@Res
form of the PZH identity followed by the device name, as describétkin

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:32of 345

EntitiessectionO.

3.1.3 PZP Modes- Connection States
The PZP can be in several different states depending athehit is connected to a PZH or not and
depending on whether idlreadyhas been enrolled in thBersonal Zone

1. Virgin Mode: This is a special céisat occursbefore a PZP enrolment. A P&t isnot enrolled
cannot connect to thé®ZH because itloesnot have certificates which allow it to establish a
TLS connection with the PZH. A PZP can still operate and provide local services but cannot
connect to the othe PZPs in th@ersonal Zone

2. Hub Mode : This is the mode where the PZP can connect to tham¥Zkis been enrolled with
the PZH.

3. Local Peer Mode: This is a mode where PZP can connect to otrsaifeeRy using a local
discovery protocol. If connected to the PZH it gets information about peer PZPs.

These states, as well as intermediari@g $10wnin the following state chart:

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:33o0f 345

Authentication failed

VirginConnecting

Authentication token
PZH address

Device identifier
Device friendly name

Authentication succeeded \ elete configuration files

VirginConnected

Certificates stored /

(HubMode)
PZP CA Certificate issued by Hub

PZP Name

PZP Identifier

MNotConnected

authentication or
communication error

{

Figure8: PZP States

The above state machine shows that in hub mode, a PZP can be in sevesttsabdepending on
whether it is connected to the PZH at that particular time.

3.1.3.1 Virgin mode

Thismode is a special caskat occursbefore PZP enrolment. This modpecifiesthat a PZP has not

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:34of 345

connected to anyersonal Zonand has not been issued a certificate. A PZP trying to connect to PZH for
the first time will be in virgin mode, and aftegtrieving certificates it will move into hub mode.

A PZP in virgin mode can be in these possible states:

1. Virgin: ThePZP has trieth connecto the PZH but failed to géhe certificates or it has not
tried to connectat all. To move to a connected state tries to resolvethe the DNS address of
PZH provider and if successful goes into connecting state.

2. VirginConnecting : TH&8ZP has started connecting to the PZH, dependirthedevices
involved,this state couldast a long timgMobile connectionpr justbe a transition state
(lasting lesds than a secondfter connectiontimeoutsor in the case that authentication fails
(e.g.socket hangupthe PZRuvill go back to the 'Virgin' state. If the connection is successful and
the PZP authenticates to¢hPZH it will move tthe VirginConnected state. In connecting state,
a PZP will go tiough the authentication and enrolment process.

3. VirginConnected : This temporary state allows the PZP to download permanent PZP certificates
from the PZH and store thervhen this has been done successfully, the PZPezaonnect to
the PZH and enterub mode. If there is an error of any kind it will go back to Virgin mode.

If Virgin mode is successful then device should be issued all the certificates necessary td tmanec
PZH.

3.1.3.2 Hub Mode

PZRBthat havereceivedcertificates from a PZbBre considered to be&n hub mode. When a PZP is started
on a device which has been enrolled previously, it begittsthe "NotConncted" state.

1. Not connected: The PZ4#¬ connected to the PZH but &the certificate. It is not currently
able to establish socket/IP connection with the PZH. This could be due to the PZH non
availability or the PZP not haviagsuitablenetwork connectionfor example 3Ghetwork not in
cowerage andand device is not connected to Wétiher)

2. Connecting : The PZ#triggered manually or automaticaltp connectwith the PZHIf
successful the PZRyoes in the connected state.

3. Connected : The PZP willinethe connectal state depending othe optimisation. In case of
error, timeout or hangup The PZRyoes to disconnected state before going backi té iot W
connectedxstate. When irthe connected statéhe PZRean triggera peer connection to be
initialized.

4. Disconnecting: This is a shin@ansition state where clean up operations will take plag&ter
this the PZP will go intid K it cbnnectedistate

3.1.3.3 Connecting to local peers

A PZP can communicate with peer BZP they are in near proximity and have a common
communication method, such as WLAN. This allows PZPs to establish communication with peer PZP
without support from the PZH. This is useful as it elimin#tescommunication overheatbwards the
PZHand coutl potentially save user moneyif a paid communication service is being used for
communication between the PZP and the PZH

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:35of 345

Peer communication is triggered by a PZP via JavaScript APIs. This causes the PZP to try and find devices
within proximity using loal discovery protocols. Once peer PZPs are foundirttiating PZP can

establish communication directly based on the certificates they hold or based on thetgpeer
authentication process SHCBK (described irbtBéPersonal Zon&ey Infrastructurgsection).

In addition, a PZP will listen for incoming connection requests from peers, if the user has allowed it. This
is shown on the lefhand side of the statdiagram below.

The following state diagram shows the different states that a PZP may be in when establishing
connections with peersSeveral peers are able to connect at any time.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

accepting
peer connections

—

no longer accepting
peer connections

P

PeersAllowed

List of known user certificates
List of connected peers

)

connection failure

a peeris
attempting to connect

PeerConnecting

Mew peer, no
previous connection.

SHCBKclient

SHCBK process failed

Authentication failure
(untrusted / bad certificate)

Pzp has certificate
for this peer

Certificates exchanged
successfully

PeerConnectingwithCert
Peer |dentifier
Peer PZH Certificate

Add to list of
connected peers

PeerConnectedAsClient
Peer |dentifier

Pzp or Peer
end connection

ClientPeerDisconnecting

remove peer fram

connected list

Motlnitiating

this Pzp attempts to
connect to another Pzp

InitiatingPeerConnection

MNew peer, no
previous connection.

connection error

SHCEBK process failed

Authentication failure (either party)

Pzp has certificate
for this peer

Certificates exchanged
successfully

InitiatingWithCerts
Peer Identifier
Peer PZH Certificate

Add to list of
connected peers

PeerConnectedAsServer
Peer |dentifier

Pzp or Peer

remove peer from
connected list

ends connection

ServerPeerDisconnecting

Figure9: PZP Connection States

3.1.3.4 Connecting to peers through the PZH.

PZPs can communicate with other PZPs by sending mesgaglkes PZH. This will route the messages
appropriately. The PZP dgieried by the PZH about the list of other connected PZP's IP askelsesnd
port they are connected. Thimitiating PZPcanif required connect to the peer directly. This is mostly
useful in scenario when two PZP'sre¢éo do media streaming.

3.1.3.5 User Preferences

The PZP haa set of parameters that are user configurable. These configurations have a default
behaviour and ithe user wans to changethesethey can specifghangesn these preferences. These
preferences are applicable befotke PZP starts connecting to the PZHhc® the PZP is connected the
selected preferences will take effect and any charafesr that timewill only take affect the next time a

PZP reconnects to the PZH. These preferences dictate the PZP connection behavior such as ports
configuration, preferenes for synchronisation, clear application contents, synchronization options and
connection preference(hub/peer).

1 Synchronisation: The default behaviour is to synchronise all items across PZP's, but user can
select individually what items to synchrsai

1 Application Content: Applications running on the PZP store gtaie contents by default. Ithe
user wishes to deletthis data after session ergdthey can select an option to do thathat will
delete all application contents, once the PZP is disconnected from the peer PZP or PZH.

1 Connection preference: The PZP connects by default to the PZH, and then based on JavaScript
API invocation it connects to other PAR its ownZone. Theuser can sealct an option to
connectto PZPsn peer modeby defaulf with which the PZP willways connect to peers
instead of connecting to PZH. Peers could updag¢sdevice about certitates and policy via
synchroniation. This preference idoneasper PZP.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:39of 345

3.2 RPC

3.2.1 Introduction

This section describes the RPC mechanism and protocol used in webinos. This section also describes the
dependencies between RPC and the messaging specification since RPC objects are sent as payload of
messaging packages ratherath for example, direct requests on a RESTful interface. This also means
that the RPC part of a call to a remote system follows the F3BI2.0 specification but together with
messaging part it does not. Thus, it witit be possible to post just a JISBNPC messade an endpoint

in order to get it executed. In addition the webinos messaging must be wrapped around the calls.

In addition to the general RPC protocol and field encoding specifications this section also lists all RPC
messages that argéransmitted between webinos entities. This espiadly meansthat this section
provides the mapping between webinos JavaScript APIs and RPC calls.

3.2.2 RPC protocol definition

The webinos RPC protocol should be compliant to JSON RPC 2.0 as specified at
http://jsonrpc.org/spec.html Readers are required to b&amiliar with the JSON RPC version 2.0
specification.

3.2.2.1 webinos RPC Requests

According to JSORPC 2.0 a RPC request object needs to have four members that are briefly described
as:

1 jsonrpcA String that represents the protocol version used. It MUST be exactly "2.0" when using
webinos.

1 methodA String containing the name of the method to be invoked. The narcivep®e used in
webinos is described further later.

1 paramsA Structured vale that holds the parameter values to be used during the invocation of
the method.This member MAY be omitted.

71 id An identifier that MUST contain a String, a Number, or NULL value if included.

The method field itself is encoded using three parts as follows:

method: <type>@<instance>.<function>

1 <type>, a service type identifier that matches the service type followed by a '@"' symbol, for
example as used to select a service while using the findSérmiethod of the webinos service
discovery API

1 <instance>a service instance identifier thapecifieghe service to be used followed by a '
symbol this is used to prevent ambiguity in the cases whrardtiple services of the same type
are available

1 <function>, a method identifier that specifies the methihat should be invoked on the target
service

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

http://jsonrpc.org/spec.html

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:40of 345

The <instance> value is not further specified and can be implementation specific. It must be a locally
unique identifier of the related service soahRPC calls can be uniquely assigned to a specific service.
For example if on a PZP two services of the same type are available then the <instance> must be
different in order to select the desired service for invocation. The <instance> value must be propagated
by any service discoverjunction so that client side s®ice bindings know about the service type and

the service instace id (see ServiceDaery RPC protocol)n addition the actual method, must be used

to create the method field of the RPC request for service invocation requests.

Following a fulgenericrequest message formaan examplds provided, whiclinvokes a function called

exampleFunction of an example service with tyytp://webinos.org/api/exampleon a PZP. The actual
service address in terms of the PZP where the service is ruaniisgnot part of the JSOMRPC message

It is handled through the messaging layer as shown in the next example.

Generic message format

JSON: Object

{
id: <id>
jsonrpc: "2.0"

method: <type>@-<instance>.<function>
params: {
<paraml>: <valuel>

<param2>: <value2>

}

To summase the syntax of webinos RPC cadls described abovéd is a locally unique id created by
the origin of an RPC request so thhe responses can be mapped to requests. Tddield can be
omitted if responses @ not expectedjsonrpcis the static version info field which MUST not be other
than "2.0".paramsis a RPC message specific object thaycontain any JSON data and is used as input
parameters for the invoked method.

Example about how itmay look in an implementation

JSON: Object

{
id: "2"
jsonrpc: "2.0"

method:
" http: //webinos.org/api/example @6e6885b25a7ddb5f4658e7a599d1fc17.exampleF
unction”

params: [

"example result"

}

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:41of 345

In this example the params field is an arraylarfgth 1 which is used for a function that just takes one
argument. The method field consists of the three parésservice type and instance identifier as
described above and the exampleFunction function that should be invoked at the target service.

The xample abwee only shows the RPC part of theessage transaction. A full example that also
includes messaging and routing information is given below.

JSON
{
from: "PZ_Name/example_Pzp/0"
id: 33
payload: {
id: "2"
jsonrpc: " 2.0"
method:

"http: //webinos.org/api/test@6e6885b25a7ddb5f4658e7a599d1fcl7.exampleFunc
tion"

params: [

"example input parameter"

}
resp_to: "PZ_Name/example_Pzp/0"
to: "PZ_Name/example_Pzp"
type: "JSONRPC"

}

This shows that a RR®ntaining routing infarelies on the messaging part which needs to know the
address of the service in order to forward the RPC request talésiredPZP. This information must be
provided by the service discery module (see detailed service discovery API protocol in order to add
the service address informatiorThis information is adde@hen the RPC module creates JSRRC
messages that should be geto another PZP or PZH using the messaging and session cgentpmf
webinos. Detailed information about the messaging related attributes of the JSON structamebe
found inthe Messaging and Routing specification.

3.2.2.2 webinos RPC Requests with subscriptions

JSORMRPC has inbuilt support only for request/responsadification messages. It does not support an
integrated mechanism for recurring responses where one request can result in multiple respoeses

time. For example the W3C Geolocation API provides a method called watchPosition. The method takes
a positionupdate listener as input argument that is callederytime the position changes. Using JSON
RPC without additions would mean that the listener can only be called on time because afterwards the
response message id would become invalidis occurs becaudbe receiver of the response can delete

the id from the stack of awaiting responses whitien resultsin the inability to match additional
responses to the desired listener.

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:42 of 345

In the webinos platform it is allowed to use the ID of a request message as receiver selector for
subsequent request messages that were made in response to the original request. This basically allows
for a subsctiption basedcheme within JISORPC where answers ta specific JSORPC request are

sent also as JSERPC request but including a specific selecitie selectoallows choos®f the correct

original requesting object. In this case IDs will be valid until either the subscrijgtioanceled,
connection tothe service was losbr until the service isinbound or connection to the service was lost.

In the case of the subscription being cancelled this can occur iintredved APInvokesunsubscribe,
clearWatch, removeEventListener similar calls.

The approach is described usirge followingexample.

The method addEventListener is a function that returns some data on a regular basis which can change
over time Instead ofimplementing this as aynchronousreturn of adirect result itinsteadreturns

resuts using a listener pattern. Thus, multiple results can be provided to a callback. The message below
invokes the addEventListener function a "http://webinos.org/api/example” service. The function takes a
callback that is used to provide the results back the caller, for example void
addEventListener(EventListener callback).

On the client site the RPC implementation needs to record that calling addEventListener can return
multiple responses as JS@¢quest messageshe id of the JISONlessage ("2") musbe used for all
answers related to this callback registration.

RPGRequest for Listener pattern:

payload: Object

{
id: "2"
jsonrpc: "2.0"

method:
"http: //webinos.org/api/test@6e6885b25a7ddb5f4658e7a599d1fc17.addEventLis
tener"

params: nul |

}

RPGEResponse as JSARPC Request message for listener pattern:

payload: Object

{
jsonrpc: "2.0"
method: "2.onEvent”;
params: {
"msg":"example result"
}
}

payload: Object

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebinos

webinos phase Il architecture and components

FP7ICT-20095 257103

page:43of 345

jsonrpc: "2.0"
method: "2.onEvent";

params: {

"msg":"another example result”

}

The method for the callback (like onEvent) depends on the methods exposed by the callback object

(here referenced with ID 2) on the request side. Thus other methods may be callable too orjetie ob
while using the same id.

payload: Object
{
jsonrpc: "2.0"
method: "2.onAnotherFunction”;
params: {
"result": {
"atrl": 1
"atr2": 2
}
}
}

3.2.2.3 webinos RPC Responses

The bllowingis an example response to the request made in the previous sedt@mna positive result
of invoking exampleFunction.

1 jsonrpcis again the JISORPC version identifier that MUST be set to "2.0".
1 id MUST match the provided RPC request id so that the resparsbe matched against
requests being made previously.
1 resultis an object that contains any JSON structure and represents the result of the method
invocation.In this case iis just a String.
JSON
{
jsonrpc: "2.0"
id: "3"
result: "22 somet hing to echo"
}

3.2.2.4 webinos RPC errors

In case of any errors occurred at the RPC server, either internal RPC errors like "method not found" or

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

GﬁWEbIHOS FPZICT-20095 257103

webinos phase Il architecture and components page:44 of 345

an error callback of an API, negative responses need to be created and sent back to the requester using
following format that follows the JISOGRPC specification 2.0.

JSON Objeatontainsthe attributesof

T jsonrpcwith avalueof "2.0"
71 idwhich is the identifier of the corresponding request
1 errorwhich is an object describing the occurred error in more detail

Theerror attribute itself consists again of three attributes

1 codewhich is either a RPC protocol specific code as defined in theRBGONpecification v2.0
(for example-32601 "Method not found") or the webinos specific error ce82000. Code
31000 must be usedhen an API specific error is provided as result of a method invocation.
Basically if an API throws an Exception or returns with calling an error callback as defined in the
API.

1 messageavhich is either a message related to the code field as specifideid$ONRPC
specification v2.0 or "Method Invocation returned with error” if code is seBi®00

1 datawhich is an API specific error object that should be provided to the original API caller either
by throwing an exception or be invoking a related exallback which is registered with the ID
of the message.

An example for a webinos specific error is shown below. The data field contains a W3C DOMError,
namely the "NotSupportedError" error, which should be forwarded to the original requester that may
awat a success callbaeky error callback, or an exception to be thrown. The original requester from an
API point of view will only receive the object stored in the data attributeéh@sinput of the error
callback.

JSON

{
jsonrpc: "2.0"
id: "2"
error = {

data: "NotSupportedError",

code: -31000,
message: 'Method Invocation returned with error’
h

}

3.2.3 Mapping JavaScript APIs to RPC messages

For each JavaScript call a related RPC mapping must be definedige tiee RPC bindingn this section

a general approach of mapping APIs to RPC messages is described that must be used if possible. For API
functionalities where a mapping is not trivial and cannot be described in a generj¢heagifferences

andthe full messages needed aspecified respectively

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:45 of 345
Possible cases where a simple mapping cannot be givesteaozived below

1 Supporting functions where additionahdnot directly JS API call related RPC messages will be
defined where suitableAnexampleis pre-fetching allstatic attributes of the Sensor API with
one RPC message during binding to the service rather than using one synchronous message for
each attribute when it is accessed. This allows much better bandwidth usage and response
times for accessing just statictalbutes.

1 Since the JSORPC protocol is a stateless protocol additional attributes may be needed by
certain services to match client side and server side objects to be used for executing methods
declared within the RPC messages. For example calls oktheeStatus API are more like
atomic callsWhen arequest is made and one result is provided,state information is needed.
For other APIs kind of state information is needed, for example exactly on which File object a
read/write operation should be pé&wrmed. This information is not reflected in the JavaScript
API (and must not) but it must be transmitted within the RPC messages.

After the general descriptions of the mappings and concrete additional messagjse end of this
section two full exampleare listed the Discovery API as well as the Generic Sensors API.

As described in the previous sections each RPC call cartiplySONRPC 2.0. Some elements are set by

a compliant JSORPC implementation itself, for example the 'id' and the 'jsonrpld figo that they are

not listed again for eachf the following example. Only the relevant parts of the messages are shown.
The service instance identifier, as introduced in the previous section, is also abbreviated using following
the term <instance>.

3.2.3.1 Mapping Function Calls
3.2.3.1.1 Invoking a Remote function

3.2.3.1.1.1 Mapping function names

The <function> field of the RPC message that represents the function invoked at the target service must
be mappedasfollows

<function> = <InterfaceName>.<functionName> where

1 <Interfa@Name> is the name of the related JavaScript interface of the API
1 <functionName> is the name of the function that is called

Example

WeblIDLthe launchApplication() function of the AppLauncherManager interface

JSON: Object
{

method:
"http: //webinos.org/api/applauncher@<instance>.AppLauncherManager.launchA
pplication”

}

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:46 of 345
3.2.3.1.1.2 Mapping parameters

Input parameters of functions must be encoded in a JSON object which is assigned to the params field of
the RPC message. The object must coradliparanmetersthat are specified in the relating JavaScript API

as mandatoryand usethe same parameter names as attribute names. Optional parameters can be
omitted, and success and error callbacks must be skipped because they are handled separately by the
RPC prtwcol as described above.

Example

WeblIDL:void launchApplication(VoidFunction successCallback, ErrorCallback errorCallback,
DOMString applicationID, sequence<object> params)

JSON: Object
{

method:

" http: //webinos.org/api/applauncher@<instance> .AppLauncherManager.launchA
pplication”

params: {

appURI: " http: /lwww.example.org"

}

3.2.3.1.2 Callbacks

Both error callbacks and success callbacks must contain exactly the data structure as defined in the
related JavaScript API specificationshieir respective data fields. For error callbacks tlaga attribute
of the error field and for success callbacks tesultfield.

Example

WebIDL: callback ApplnstalledCallback = void (boolean result);

JSON
{

result: result

WebIDL: callbackErrorCallback = void (DOMError error);

JSON

{
error = {
data: error,
|3

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:47 of 345

}

3.2.4 List of additions to general mappings

This subsection lists additions needed by some APIs which can not be reflected in general, for example
for APIs where some stateformation is needed to match client and server side objects. webinos
compliant RPC implementations must not rely on any other addition to the general mappimdhi

ones listed here.

3.2.4.1 Service Discovery API

3.2.4.1.1 FindCallBack.onFound

In addition to the servicattributes that must be provided accordirtg the general mapping schema a
additional parameter is provided for internal use.

f serviceAddresshich is the address of the PZP that hosts the found service. This parameter will
be used in subsequent calls toet service so that RPC requests can be routed to the desired PZP
and service endpoint.

TheserviceAddressiust not be provided to application developers.

3.2.4.2 File APIs

This section specifies RPCs made by the File API (incl. Writer, and Directories and System)
Types
This RPC specification includes the following recurring types, later denotething>.

FileSystem

{ name : "default" }

Entry

{ name : "file"

, fullPath : "/directory/file"

, filesystem : <FileSystem>
, isFile : true

, isDirectory : false

}

Service

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:48of 345

All three file-related specifications are merged into a single service interface, whose operations
are further described below.

requestFileSystem

Request

Theparams include the requiredpe , i.e.,0 (temporary) on (persistent), aneize in bytes
e.g.,1024.

JSON: Object
{id: 1
, jsonrpc : "2.0"

, method :
"http: //webinos.org/api/file@<instance>.File.requestFileSystem"

, params :
{type:1
, Size : 1024
}

}

Response

JSON: Object

{id: 1

, jsonrpc: "2.0"

, result: <FileSystem>

}

resolveLocalFileSystemURL

Request

JSON: Object
{id:2
, jsonrpc : "2.0"

, method :
"http: //webinos.org/api/file@<instance>.File.resolveLocalFileSystemURL"

, params : { url :
"webinos: http: //travelapp.webinos.org/persistent/italy.route" }

}

Response

JSON: Object
{id: 2
, jsonrpc: "2.0"

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebinos

webinos phase Il architecture and components page:49 of 345

FP7ICT-20095 257103

, result: <Entry>

}
getMetadata

Request

JSON: Object
{id: 3
, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.getMetadata"
, params : { entry : <Entry> }

}

Response

JSON: Object

{id: 3

, jsonrpc: "2.0"

, result:
{ modificationTime : "2012 -01-01T12:00:00.000Z2"
, Size : 1024
}

}

moveTo

Request

JSON: Object
{id: 4
, jsonrpc : "2.0"
, method : " http: //webinos.org/api/file@<instance>.File.moveTo"
, params :
{ source : <Entry>
, parent : <Entry>
, hewName : "newx"
}
}

Response

JSON: Object
{id: 4
, jsonrpc: "2.0"

, result: <Entry>

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebinos

webinos phase Il architecture and components page:50 of 345

FP7ICT-20095 257103

}
copyTo

Request

JSON: Object
{id:5
, jsonrpc : "2.0"
, method : " http: //webinos.org/api/file@<instance>.File.copyTo"
, params :
{ source : <Entry>
, parent : <Entry>
, newName : "newx"

}

}

Response

JSON: Object
{id: 5

, jsonrpc: "2.0"

, result: <Entry>

}

remove

Request

JSON: Object

{id: 6

, jsonrpc : "2.0"

, method : " http: //webinos.org/apiffile@<instance> .File.remove"
, params : { entry : <Entry> }

}

Response

JSON: Object
{id: 6

, jsonrpc: "2.0"
, result: null

}

getParent

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebmos FPZICT-20095 257103

webinos phase Il architecture and components page:51 of 345
Request

JSON: Object

{id:7

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.getParent"

, params : { ent ry : <Entry>}

}
Response

JSON: Object
{id: 7
, jsonrpc: "2.0"

, result: <Entry>

}
getFile

Request

Theparams includeoptions which specify if the requested file should be createghie), and
if the creation should bexclusive

JSON: Object
{id: 8
, jsonrpc : "2.0"
, method : " http: //webinos.org/api/file@<instance>.File.getFile"
, params :
{ entry : <Entry>
, path : "bar"
, options :
{ create : true
, exclusive : false

}

}

Response

JSON: Object
{id: 8

, jsonrpc: "2.0"

, re sult: <Entry>

}

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebinos

webinos phase Il architecture and components page:52 of 345

FP7ICT-20095 257103

read

Not yet specifiedlhis will include setting up a channel for pausable reading.

write

Not yet specifiedlhis will include setting up a channel for chunked writing.

truncate

Request

JSON: Object
{id: 11
, jsonrpc : "2.0"
, method : “http: //webinos.org/api/file@<instance>.File.truncate"
, params :
{ entry : <Entry>
,size: 0

}

}

Response

JSON: Object
{id: 11

, jsonrpc: "2.0"
, result: null

}
getDirectory

Request

Theparams includeoptions which specify if the requested directory should be created
(create), and if the creation should bgclusive

JSON: Object
{id: 12
, jsonrpc : "2.0"
, method : " http: //webinos.org/api/file@<instance>.File.getDirectory"
, params :
{ entry : <Entry>
, path : "bar"
, options :

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

ﬁwebinos

webinos phase Il architecture and components

FP7ICT-20095 257103

page:53of 345

{ create : true
, exclusive : false

}

}

Response

JSON: Object
{id: 12

, jsonrpc: "2.0"

, result: <Entry>

}

removeRecursively

Request

JSON: Object
{id: 13
, jsonrpc : "2.0"

, method :
"http: //webinos.org/api/file@<instance>.File.removeRecursively"

, params : { entry : <Entry>}

}

Response

JSON: Object
{id: 13

, jsonrpc: "2.0"
, result: null

}

readEntries

Request

JSON: Object

{id: 14

, jsonrpc : "2.0"

, method : " http: //webinos.org/api/file@<instance>.File.readEntries"
, params : { entry : <Entry>}

}

Response

This work is partially funded by webinos, anfibided project under the EU FP7 IRfbgramme, No 257103.

